

Software Assurance Curriculum Project
Volume III: Master of Software Assurance
Course Syllabi

Nancy R. Mead, Software Engineering Institute
Julia H. Allen, Software Engineering Institute
Mark Ardis, Stevens Institute of Technology
Thomas B. Hilburn, Embry-Riddle Aeronautical University
Andrew J. Kornecki, Embry-Riddle Aeronautical University
Richard C. Linger, Oak Ridge National Laboratory

March 2011; Revised July 2011

TECHNICAL REPORT
CMU/SEI-2011-TR-013
ESC-TR-2011-013

CERT® Program
Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

http://www.cert.org

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2011 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI publications, please visit the library on the SEI website (www.sei.cmu.edu/library).

 CERT | SOFTWARE ENGINEERING INSTITUTE | i

Table of Contents

Acknowledgments vii

How to Use This Document ix

Abstract xi

1 Introduction 1

2 Assurance Management (AM) Course 3
2.1 Catalog Description 3
2.2 Prerequisites 3
2.3 Expected Student Outcomes 3
2.4 List of Topics 4
2.5 Sources 5

2.5.1 Primary 5
2.5.2 Secondary 6

2.6 Assignments 8
2.7 In-Class Activities 8
2.8 Suggested Schedule 8

3 System Operational Assurance (SOpA) Course 13
3.1 Catalog Description 13
3.2 Prerequisites 13
3.3 Expected Student Outcomes 13
3.4 List of Topics 14
3.5 Sources 14

3.5.1 Primary 14
3.5.2 Secondary 15

3.6 Assignments 16
3.7 In-Class Activities 16
3.8 Suggested Schedule 16

4 Assured Software Analytics (ASA) Course 21
4.1 Catalog Description 21
4.2 Prerequisites 21
4.3 Corequisites 21
4.4 Expected Student Outcomes 21
4.5 List of Topics 21
4.6 Sources 22

4.6.1 Primary 22
4.6.2 Secondary 22

4.7 Assignments 24
4.8 In-Class Activities 24
4.9 Suggested Schedule 24

5 Assured Software Development 1 (ASD1) Course 29
5.1 Catalog Description 29
5.2 Prerequisites 29
5.3 Expected Student Outcomes 29
5.4 List of Topics 29
5.5 Sources 31

 CERT | SOFTWARE ENGINEERING INSTITUTE | ii

5.5.1 Primary 31
5.5.2 Secondary 33

5.6 Assignments 34
5.7 In-Class Activities 34
5.8 Suggested Schedule 34

6 Assured Software Development 2 (ASD2) Course 39
6.1 Catalog Description 39
6.2 Prerequisites/Corequisites 39
6.3 Expected Student Outcomes 39
6.4 List of Topics 39
6.5 Sources 40

6.5.1 Primary 40
6.5.2 Secondary 41

6.6 Assignments 44
6.7 In-Class Activities 44
6.8 Suggested Schedule 44

7 Assured Software Development 3 (ASD3) Course 49
7.1 Catalog Description 49
7.2 Prerequisites/Corequisites 49
7.3 Expected Student Outcomes 49
7.4 List of Topics 50
7.5 Sources 50

7.5.1 Primary 50
7.5.2 Secondary 51

7.6 Assignments 52
7.7 In-Class Activities 52
7.8 Suggested Schedule 52

8 Assurance Assessment (AA) Course 57
8.1 Catalog Description 57
8.2 Prerequisites 57
8.3 Expected Student Outcomes 57
8.4 List of Topics 58
8.5 Sources 58

8.5.1 Primary 58
8.5.2 Secondary 59

8.6 Assignments 59
8.7 In-Class Activities 60
8.8 Suggested Schedule 60

9 System Security Assurance (SSA) Course 65
9.1 Catalog Description 65
9.2 Prerequisites 65
9.3 Expected Student Outcomes 65
9.4 List of Topics 66
9.5 Sources 66

9.5.1 Primary 66
9.5.2 Secondary 67

9.6 Assignments 67
9.7 In-Class Activities 68
9.8 Suggested Schedule 68

 CERT | SOFTWARE ENGINEERING INSTITUTE | iii

10 Software Assurance Capstone Experience (SACE) 71
10.1 Catalog Description 71
10.2 Prerequisites 71
10.3 Corequisites 71
10.4 Expected Student Outcomes 71
10.5 List of Topics 72
10.6 Sources 72
10.7 Project Guidance 72

Appendix A: MSwA2010 Body of Knowledge (BoK) 75

Appendix B: MSwA BoK Topics Covered by Syllabi 83

Appendix C: Acronym List 87

Bibliography 91

 CERT | SOFTWARE ENGINEERING INSTITUTE | iv

 CERT | SOFTWARE ENGINEERING INSTITUTE | v

List of Tables

Table 1: Syllabus for Assurance Management (AM) Course 8

Table 2: Syllabus for the System Operational Assurance (SOpA) Course 16

Table 3: Syllabus for the Assured Software Analytics (ASA) Course 24

Table 4: Syllabus for the Assured Software Development (ASD1) Course 35

Table 5: Syllabus for the Assured Software Development (ASD2) Course 45

Table 6: Syllabus for the Assured Software Development (ASD3) Course 53

Table 7: Syllabus for the Assurance Assessment (AA) Course 60

Table 8: Syllabus for the System Security Assurance (SSA) Course 68

Table 9: MSwA BoK Topics Covered by the Syllabi 83

 CERT | SOFTWARE ENGINEERING INSTITUTE | vi

 CERT | SOFTWARE ENGINEERING INSTITUTE | vii

Acknowledgments

The authors thank the following individuals for their contributions to this report. We greatly ap-
preciate their insights and efforts.

• Our sponsor Joe Jarzombek, U.S. Department of Homeland Security (DHS) National Cyber
Security Division (NCSD), had the insight to recognize the need for such a curriculum and
support its development.

• These individuals provided careful reviews and helpful feedback:

- Christopher Alberts, Carnegie Mellon University, Software Engineering Institute, CERT
Program

- Alan Hevner, Citigroup/Hidden River Chair of Distributed Technology Information Sys-
tems Decision Sciences Department, University of South Florida

- Lori Kaufman, Carnegie Mellon University, Software Engineering Institute, CERT Pro-
gram

- Lisa Young, Carnegie Mellon University, Software Engineering Institute, CERT Program

- Nick Brixius, Professor of Software Engineering, Embry-Riddle Aeronautical University

- Remzi Seker, Associate Professor and Chair of Computer Science, University of Arkan-
sas, Little Rock

- Bob Ellison, Carnegie Mellon University, Software Engineering Institute, CERT Program

We would also like to acknowledge the contributions of our editors, Pennie Walters and Melanie
Thompson, as well as those who commented during the public review process.

 CERT | SOFTWARE ENGINEERING INSTITUTE | viii

 CERT | SOFTWARE ENGINEERING INSTITUTE | ix

How to Use This Document

The syllabi in this document were created to support the development of a set of courses to be
used in a master of software assurance curriculum, as described in Appendix F of Software Assur-
ance Curriculum Project Volume I: Master of Software Assurance Reference Curriculum [Mead
2010], henceforth referred to as Volume I. An alternate approach is to integrate selected course
content into an existing master of software engineering program. Course designers using these
syllabi should become familiar with the contents of Volume 1 and rely on it as a primary resource
for software assurance course design.

Each syllabus contains the following components: a catalog description, the course prerequisites
and corequisites, expected student outcomes, a list of topics, a set of primary and secondary
sources, descriptions of assignments and in-class activities, and a suggested schedule. The follow-
ing sections explain some of these components.

Prerequisites and Corequisites

The designated prerequisites and corequisites are based on the assumption that all the courses are
offered as part of a master of software assurance program that follows the guidance in Volume I
[Mead 2010]. These requisites are designed to ensure that the expected student outcomes can be
achieved. If all the courses are not offered or they are offered in a sequence that is different from
that described in the prerequisites/corequisites, course designers will have to either use other
courses in their curriculum that have similar content or designate alternative prerequi-
sites/corequisites to ensure adequate knowledge and experience. If appropriate courses are not
available, the expected student outcomes will likely need to be modified.

Expected Student Outcomes

The course outcomes are described in Appendix F of Volume I. Along with the list of topics, the
outcomes are derived from the MSwA2010 Body of Knowledge (BoK), which is contained in
Volume I and provided in Appendix A of this document for easy reference. The curriculum out-
comes listed in Chapter 4 of Volume I were the primary influence on the organization and content
of the MSwA2010 BoK, so, collectively, the course syllabi student outcomes represent the
MSWA2010 outcomes. For ease of use, Appendix B provides a table that indicates which know-
ledge areas of the MSwA BoK are covered by which courses in this syllabi. Therefore, course
designers modifying the syllabi must ensure that overall curriculum outcomes are not adversely
affected and that, when necessary, appropriate alternative outcomes are developed.

Primary and Secondary Sources

The primary sources are recommended both as the main sources that course designers would use
when developing course materials and as student reading material. In many cases, other sources
can provide similar material, but it is recommended that course designers examine the primary
sources as candidates.

Secondary sources are listed to provide additional background and resources that course designers
might wish to use but that are not considered as comprehensive or as broadly applicable as the

 CERT | SOFTWARE ENGINEERING INSTITUTE | x

primary sources. The secondary sources include journal papers, web sources, and standards. Such
secondary sources might be used as reading assignments on specific topics or as support for stu-
dent project work. Appropriate secondary sources will change over time as software technologies
and educational needs continue to evolve.

Assignments and In-Class Activities

Assignments and in-class activities include regular reading assignments and individual and group
exercises. Most courses include a student team project that represents a major course learning ac-
tivity. These assignments, activities, and projects are all elaborated in the suggested schedule.
This is certainly an area where course designers may want to introduce alternatives based on in-
structor experience and interest, special domains emphasized in a particular program, and availa-
ble technology and tools.

Suggested Schedule

The suggested schedule outlines a week-by-week schedule of topics and activities that portray one
approach for achieving course objectives. All syllabi assume a semester-long, 14-week schedule
with one session per week. Each session typically requires three hours of student effort but could
be divided into multiple shorter sessions, depending on the program teaching plan.

Course designers may want to consider an alternate schedule of weekly activities—a different
ordering of topics and alternate reading assignments, exercises, and projects. It is recommended
that any redesign should use the expected student outcomes as a guide and checklist.

 CERT | SOFTWARE ENGINEERING INSTITUTE | xi

Abstract

Modern society depends on software systems of ever-increasing scope and complexity in virtually
every sphere of human activity including business, finance, energy, transportation, education,
communication, government, and defense. Because the consequences of failure can be severe,
dependable functionality and security are essential. As a result, software assurance is emerging as
an important discipline for the development, acquisition, and operation of software systems and
services that provide requisite levels of dependability and security.

This report, the third volume in the Software Assurance Curriculum Project sponsored by the U.S.
Department of Homeland Security, provides sample syllabi for the nine core courses in the Master
of Software Assurance Reference Curriculum. That curriculum, detailed in Volume I, Master of
Software Assurance Reference Curriculum (CMU/SEI-2010-TR-005), presents a body of know-
ledge from which to create a Master of Software Assurance degree program, as both a stand-alone
offering and as a track within existing software engineering and computer science master’s degree
programs. Volume II, Undergraduate Course Outlines (CMU/SEI-2010-TR-019), presents seven
course outlines that could be used in an undergraduate curriculum specialization for software as-
surance.

This volume is part of our transition plan for assisting educators who wish to implement a Master
of Software Assurance degree program, specialization, or certificate program. In addition to ap-
plication in a standard university program, these syllabi may also be useful for educators develop-
ing courses for industry practitioners.

 CERT | SOFTWARE ENGINEERING INSTITUTE | xii

CMU/SEI-2011-TR-013 | 1

1 Introduction

This report provides sample syllabi for the nine core courses in the Master of Software Assurance
Reference Curriculum [Mead 2010]. We recommend that readers familiarize themselves with the
reference curriculum prior to using this document, in order to get a fuller understanding of the
context. The syllabi are written in a standard way to include a catalog description, the course pre-
requisites and corequisites, expected student outcomes, a list of topics, a set of primary and sec-
ondary sources, descriptions of assignments and in-class activities, and a suggested schedule.
Some of the material is repeated in each syllabus so that each one is self-contained. As noted in
the reference curriculum report, each course is intended to be a one-semester course. Although we
have suggested prerequisites and corequisites, we recognize that different universities may handle
prerequisites in various ways and may use prior course work, work experience, or standardized
tests to satisfy prerequisites.

Universities that intend to implement such a curriculum might consider adding one to two courses
at a time to work their way up to the full degree program, specialization, or certificate program.
When starting out, it would be best to offer a course that does not have a prerequisite within the
program, such as the System Operational Assurance or Assured Software Development 1 course,
and that is within or close to the faculty’s areas of expertise.

We have included a variety of sources, ranging from books to papers, videos, and podcasts. Most
of these sources are accessible, and for the primary sources, we have provided abstracts or annota-
tions.

In addition to application in a standard university program, these syllabi may also be useful for
educators developing courses for industry practitioners. The structure may differ, but the content
should still be valid for that audience as well.

This document is part of our transition plan for assisting educators who wish to implement a Mas-
ter of Software Assurance degree program, specialization, or certificate program.

MSwA Implementation Considerations for Syllabi

Since there are a number of ways to order the courses, each university that wishes to implement
an MSwA degree program or an SwA specialization within another degree program needs to con-
sider topics that should appear in a course offered early on in its program. As well, there is a level
of detail beyond the topics included in the syllabus that could be considered during implementa-

tion.

In order to provide a good background and understanding of the assurance problem, universities
should expose students to a survey of attack patterns and vulnerabilities early in the curriculum.
This will help them to “think like an attacker” and be mindful of the threat environment as they
proceed through the program. For example, if the Assurance Assessment course appears early in
the university’s curriculum, it could include a discussion of attacks and vulnerabilities in the “se-
curity fundamentals” topic. The Common Weakness Enumeration (CWE) is a good resource to

use in this discussion.

CMU/SEI-2011-TR-013 | 2

Students also need to understand the importance of social engineering. In recent attacks, such as
the Google compromise in China1, social engineering was used to get access to critical code sec-
tions. Most likely the Stuxnet attack2 also involved aspects of social engineering. This topic could
be included when instructors discuss the concept of “thinking like an attacker” in the Software

Security Assurance course.

Hands-on topics that could be considered at a number of places in the curriculum include failure
analysis, static analysis tools, and assurance testing. Detailed techniques such as fuzz testing may
also be covered. These topics might appear in Assured Software Analytics or in one or more of
the Assured Software Development courses. These courses are also good places to introduce
common problems that appear at the architecture, design, and coding levels and result in vulnera-

bilities.

Since our field is relatively new, it is undoubtedly the case that recent research and industry trends
will influence what is actually taught. Students should learn how to find the most up-to-date in-
formation from trustworthy places, such as the CWE website,3 in order to stay current. A good

exercise might be to ask students to review and rank software assurance websites.

1 For more information, see Google’s blog at http://googleblog.blogspot.com/2010/01/new-approach-to-

china.html.

2 More information about Stuxnet is available at http://en.wikipedia.org/wiki/Stuxnet.

3 http://cwe.mitre.org/

CMU/SEI-2011-TR-013 | 3

2 Assurance Management (AM) Course

2.1 Catalog Description

This course covers the fundamentals of software and system assurance management, including
risk assessment, identification, analysis, mitigation, and monitoring for assurance; compliance
with laws, regulations, standards, and policies related to assurance; planning and managing devel-
opment projects that include assurance practices; and, given this information, making the business
case for assurance.

2.2 Prerequisites

• completion of the Assured Software Development 1 (ASD1), Assured Software Development
2 (ASD2), and Assured Software Development 3 (ASD3), and Assurance Assessment (AA)
courses. Alternatively, a code of practice, such as the Building Security In Maturity Model
(BSIMM) [McGraw 2010], could be used as a source for practice selection (used in Weeks 5,
7, and 8) in lieu of more in-depth understanding of practices as conveyed in the ASD1,
ASD2, and ASD3 courses. The AA course is strongly recommended as a prerequisite for the
measurement topic that occurs in Week 9.

• Knowledge of project management in general and for software development in particular is
helpful.

2.3 Expected Student Outcomes

After completing this course, students will be able to

1. understand basic risk management concepts

2. identify risks arising from vulnerabilities and threats

3. identify, analyze, plan for, mitigate, and monitor assurance risks

4. determine assurance processes and practices that mitigate risks

5. understand how to factor in compliance requirements (laws, regulations, standards, and poli-
cies) for assurance

6. understand how to add assurance considerations and practices as part of normal project man-
agement activities

7. identify, analyze, and select assurance practices that are relevant for a specific software de-
velopment or acquisition project

8. make a business case for assurance

CMU/SEI-2011-TR-013 | 4

2.4 List of Topics

Topics on risk management concepts (Appendix A, Section 2.1) and process (Appendix A, Sec-
tion 2.2) include

• risk types and classification, including different categories of risk such as business, project,
and technical

• basic elements of risk analysis, including risk probability, impact, and severity

• models and processes used in risk management

• identification and classification of risks associated with a project

• analysis of the likelihood, impact, and severity of each identified risk

• risk management planning covering risk mitigation, avoidance, and acceptance

• the assessment and monitoring of the occurrence of risk and the management of risk mitiga-
tion strategies and actions

Topics on applying risk management concepts and process to software assurance (Appendix A,
Section 2.3) include

• analyzing risks arising from threats and software flaws and vulnerabilities

• analyzing software assurance risks for new and existing systems

• planning for and mitigating software assurance risks

• identifying software assurance processes and practices that aid in mitigating and avoiding
software assurance risks

Topics on compliance considerations for assurance (Appendix A, Section 4.3) include

• the extent to which selected laws and regulations are relevant for a specific software devel-
opment or acquisition project, and how compliance might be demonstrated

• the extent to which selected standards are relevant for a specific software development or ac-
quisition project, and how compliance might be demonstrated

• the development, deployment, and use of organizational policies to accelerate the adoption of
software assurance practices, and how compliance might be demonstrated

Topics on managing assurance (Appendix A, Section 4.2) include

• extending normal software development (and acquisition) project management skills to in-
clude software assurance

• identifying, analyzing, and selecting software assurance practices that are relevant for a spe-
cific software development or acquisition project

Topics on making the business case for software assurance (Appendix A, Section 4.1) to develop
and communicate cost-benefit arguments in support of deploying software assurance practices
include

• financially based approaches, methods, models, and tools (such as valuation and cost-benefit
models and cost and loss avoidance)

CMU/SEI-2011-TR-013 | 5

• risk analysis (as described above)

• business impact and needs analysis, specifically in support of business continuity and survi-
vability

2.5 Sources

2.5.1 Primary

• Allen, Julia H.; Barnum, Sean; Ellison, Robert J.; McGraw, Gary; & Mead, Nancy R. Soft-
ware Security Engineering: A Guide for Project Managers. Addison-Wesley Professional,
2008.

Abstract from publisher

Software that is developed from the beginning with security in mind will resist, tolerate, and
recover from attacks more effectively than would otherwise be possible. While there may be
no silver bullet for security, there are practices that project managers will find beneficial.
With this management guide, you can select from a number of sound practices likely to in-
crease the security and dependability of your software, both during its development and sub-
sequently in its operation.

Software Security Engineering draws extensively on the systematic approach developed for
the Build Security In (BSI) Web site. Sponsored by the Department of Homeland Security
Software Assurance Program, the BSI site offers a host of tools, guidelines, rules, principles,
and other resources to help project managers address security issues in every phase of the
software development life cycle (SDLC). The book’s expert authors, themselves frequent
contributors to the BSI site, represent two well-known resources in the security world: the
CERT Program at the Software Engineering Institute (SEI) and Cigital, Inc., a consulting firm
specializing in software security.

This book will help you understand why

− Software security is about more than just eliminating vulnerabilities and conducting pe-
netration tests

− Network security mechanisms and IT infrastructure security services do not sufficiently
protect application software from security risks

− Software security initiatives should follow a risk-management approach to identify
priorities and to define what is “good enough”—understanding that software security
risks will change throughout the SDLC

− Project managers and software engineers need to learn to think like an attacker in order
to address the range of functions that software should not do, and how software can bet-
ter resist, tolerate, and recover when under attack

CMU/SEI-2011-TR-013 | 6

• Merkow, Mark S. & Raghavan, Lakshmikanth. Secure and Resilient Software Development.
CRC Press, 2010.

Abstract from publisher

Although many software books highlight open problems in secure software development, few
provide easily actionable, ground-level solutions. Breaking the mold, Secure and Resilient
Software Development teaches you how to apply best practices and standards for consistent
and secure software development. It details specific quality software development strategies
and practices that stress resilience requirements with precise, actionable, and ground-level in-
puts.

Providing comprehensive coverage, the book illustrates all phases of the secure software de-
velopment life cycle. It shows developers how to master non-functional requirements includ-
ing reliability, security, and resilience. The authors provide expert-level guidance through all
phases of the process and supply many best practices, principles, testing practices, and design
methodologies.

• Stoneburner, Gary; Hayden, Clark; & Feringa, Alexis. Engineering Principles for Informa-
tion Technology Security (A Baseline for Achieving Security). National Institute of Standards
and Technology (NIST), 2001.

2.5.2 Secondary

For risk management — preferred

• Alberts, Christopher J. & Dorofee, Audrey J. Risk Management Framework (CMU/SEI-2010-
TR-071). Carnegie Mellon University, Software Engineering Institute, 2010.
http://www.sei.cmu.edu/library/abstracts/reports/10tr017.cfm

• Australian/New Zealand Standard (AS/NZS) & International Organization for Standardiza-
tion (ISO). AS/NZS ISO 31000: 2009 Risk Management—Principles and Guidelines, 1st ed.
AS/NZS, November 2009.

• International Organization for Standardization (ISO). ISO/IEC FCD 27005: 2008 Information
Technology—Security Techniques—Information Security Risk Management, 2nd ed. ISO,
June 2008.

For risk management — backup if unable to purchase ISO standards

• Ross, Ron; Katzke, Stu; Johnson, Arnold; Swanson, Marianne; & Stoneburner, Gary. Manag-
ing Risk from Information Systems: An Organizational Perspective (NIST Special Publication
800-39), 2nd draft. National Institute of Standards and Technology, April 2008.
http://www.smartgridinformation.info/pdf/2283_doc_1.pdf

• Joint Task Force Transformation Initiative. Guide for Applying the Risk Management Frame-
work to Federal Information Systems (NIST Special Publication 800-37), Revision 1. Nation-
al Institute of Standards and Technology, February 2010.
http://csrc.nist.gov/publications/nistpubs/800-37-rev1/sp800-37-rev1-final.pdf

CMU/SEI-2011-TR-013 | 7

NIST SP 800-39 and NISP SP 800-37 apply risk management to U.S. federal agency infor-
mation systems. Instructors and students should understand the key concepts and methods
presented in these references but can safely ignore this specific application, generalizing to
systems and software for all types of organizations.

• CMMI Product Team. CMMI for Development, Version 1.3 (CMU/SEI-2010-TR-033). Car-
negie Mellon University, Software Engineering Institute, November 2010.
http://www.sei.cmu.edu/reports/10tr033.pdf

See the RSKM process area on pages 349-361.

• CERT. CERT Resilience Management Model. http://www.cert.org/resilience/rmm.html
(2010).

See the Risk Management (RISK), Compliance (COMP), Resilient Technical Solution Engi-
neering (RTSE) Process Areas. Free registration is required.

• International Organization for Standardization and International Electrotechnical Commission
(ISO/IEC). ISO/IEC 27002:2005 Information Technology – Security Techniques – Code of
Practice for Information Security Management. ISO/IEC, 2005.

This document is also used extensively in System Operational Assurance. Purchase is re-
quired.

• Howard, Michael & Lipner, Steve. The Security Development Lifecycle: SDL: A Process for
Developing Demonstrably More Secure Software. Microsoft Press, 2006. An online version
of the Microsoft SDL is available at http://www.microsoft.com/security/sdl/.

• Mansourov, Nicolai & Campara, Djenana. System Assurance: Beyond Detecting Vulnerabili-
ties. Elsevier, 2011.
http://www.elsevierdirect.com/ISBN/9780123814142/System-Assurance

Abstract from Publisher

In this day of frequent acquisitions and perpetual application integrations, systems are often
an amalgamation of multiple programming languages and runtime platforms using new and
legacy content. Systems of such mixed origins are increasingly vulnerable to defects and sub-
version. System Assurance: Beyond Detecting Vulnerabilities addresses these critical issues.

• McGraw, Gary; Chess, Brian; & Migues, Sammy. Building Security In Maturity Model
(BSIMM). http://bsimm.com/ (2010).

• Alberts, Christopher; Allen, Julia; & Stoddard, Robert. Integrated Measurement and Analysis
Framework for Software Security (CMU/SEI-2010-TN-025). Software Engineering Institute,
Carnegie Mellon University, 2010.
http://www.sei.cmu.edu/library/abstracts/reports/10tn025.cfm

• Mead, Nancy R.; Allen, Julia H.; Conklin, W. Arthur; Drommi, Antonio; Harrison, John; In-
galsbe, Jeff; Rainey, James; & Shoemaker, Dan. Making the Business Case for Software As-

CMU/SEI-2011-TR-013 | 8

surance (CMU/SEI-2009-SR-001). Software Engineering Institute, Carnegie Mellon Univer-
sity, 2009. http://www.sei.cmu.edu/library/abstracts/reports/09sr001.cfm

2.6 Assignments

Students should complete individual assignments as described in the suggested schedule below.
Assignments are discussed and assigned in the week shown and due the following week. Students
should also work on a team project that includes developing a project plan and business case for a
small software development project with software assurance requirements.

2.7 In-Class Activities

Class exercises should help students compare, analyze, and evaluate how organizations with suc-
cessful software assurance initiatives (refer to the BSIMM) develop and present business case
information, assess risk, select assurance practices, and plan their software assurance development
projects. Additional in-class activities and demonstrations are described in the suggested schedule
below. Note that depending on the time available, the number of activities could be increased or
decreased.

2.8 Suggested Schedule

The syllabus in Table 1 below defines in-class discussions and other activities that are intended to
reinforce lecture material and homework assignments.

Table 1: Syllabus for Assurance Management (AM) Course

Week Topic In-Class Activities Suggested Readings Assignment

1 Introduction to
Assurance
Management

• Why security is a
software issue

• Managing for more
secure software

• Getting started

• Preview of the entire
course

• Discuss course
objectives, content, and
activities.

• Discuss example software
development project with
software assurance
requirements. It will be used
throughout this course to
demonstrate key concepts.

[Allen 2008]
Chapters 1, 7, 8

[Mansourov 2011]
Chapters 1, 2

CMU/SEI-2011-TR-013 | 9

Week Topic In-Class Activities Suggested Readings Assignment

2 Risk Management
Concepts and
Process

• Sources of risk

• Define risk criteria
based on business
needs

• Identify risks

• Evaluate, categor-
ize, and prioritize
risks

• Develop risk mitiga-
tion strategies

• Implement mitigation
actions

• Review risks and
adjust mitigation
strategies

Apply a simplified version of the
risk management process
(identify, evaluate, mitigate,
review) to a component of the
example software development
project. Include risk
identification (using a simple
high, medium, low
categorization approach) and
the determination of several
mitigation approaches based
on known software assurance
practices.

• [Allen 2008]
Chapter 7.4

• [Alberts 2010b]

• [AS/NZS 2009]
ISO 31000
(preferred)

• [CERT 2010b]
CERT-RMM RISK
Process Area

• [Ross 2008]
NIST SP 800-39
(backup)

• [Mansourov 2011]
Chapter 5

Add details to the
example presented in
class for one or two
specific risks.

3 Applying Risk
Management to
Software Assurance

Tailor a general risk
management process
to software assurance
risks during the
software
development life cycle.

Identify several typical risks by
life-cycle phase

• [Alberts 2010]

• [CMMI 2010]
CMMI RSKM
Process Area

• [ISO 2008]
ISO 27005
(preferred)

• [Joint Task Force
2010] NIST SP
800-37 (backup)

Extend the list of risks
developed in class.
Propose possible
mitigations to several
identified risks.

4 Compliance
Considerations

• Laws and
regulations

• Policies

• Standards

Demonstrate approaches for
mapping software development
project requirements and
practices to the BSIMM, as one
example of compliance with a
“standard.”

• [CERT 2010b]
CERT-RMM COMP
Process Area

• [McGraw 2010]
BSIMM Compliance
and Policy (CP)
practice

• [ISO 2008]
ISO 27002
Section 15

Research and identify
(or develop) an
example of policy
language that
promotes the adoption
of software assurance
practices.

CMU/SEI-2011-TR-013 | 10

Week Topic In-Class Activities Suggested Readings Assignment

5 Managing Software
Assurance
(Preparation)

• Review the SDLC
and the integration
of software assur-
ance practices into
the SDLC. (Refer to
ASD1, 2, and 3.)

• Present and discuss
sample project;
define a starter set
of software
assurance require-
ments.

Discussion of sample project
and how to begin analyzing it.
Consider whether to break into
teams to do subsequent work
or perform work at the
individual student level.

• [Allen 2008]
Chapters 3, 4, 5

• [Mansourov 2011]
Chapters 3, 4

• [Merkow 2010]
Chapters 2, 3, 4

Elaborate on software
assurance
requirements, identify
and add example
compliance
requirements (Week
4), and derive
additional software
assurance
requirements. This
gives students/teams
an opportunity to tailor
the software project to
their specific interests.

6 Managing Software
Assurance (Identify
Risks)

Demonstrate the
process for identifying
risks building upon
Weeks 2 and 3,
applied to the sample
project

In-class teams discuss and
report risks for sample project.

Weeks 2, 3 readings Identify risks for
sample project.

7 Managing Software
Assurance (Select
Practices)

Demonstrate the
process for selecting
practices to mitigate
risks building upon
Week 3, applied to the
sample project

In-class teams discuss and
report practices to mitigate risks
for sample project.

• Week 3 readings

• [Allen 2008]
Chapter 8

• [CERT 2010b]
CERT-RMM RTSE
Process Area

• [McGraw 2010]
BSIMM

• [Howard 2006]
Microsoft SDL

• [Merkow 2010]
Chapters 5, 6, 8

• [ISO 2008]
ISO 27002 Sections
12.1-12.5

Identify practices to
mitigate selected risks
for sample project.

8 Managing Software
Assurance (Plan
Development)

Plan the sample
project: demonstrate
plan components
(tasks, resources,
schedule)

In-class teams discuss tasks,
resources, and schedule for
sample project.

• [Allen 2008]
Chapter 7.5

• [McGraw 2010]
BSIMM Strategy
and Metrics

• [Howard 2006]
Microsoft SDL,
Appendix O

Identify tasks,
resources, and
schedule for sample
project.

CMU/SEI-2011-TR-013 | 11

Week Topic In-Class Activities Suggested Readings Assignment

9 Managing Software
Assurance (Review
and Measure)

• Performing status
reviews of sample
project

• Measuring key indi-
cators of sample
project status

• Revisiting risks as
project progresses

In-class teams discuss review
criteria, key indicators, and
triggers for revising risks and
mitigations for sample project.

[Alberts 2010b]
particularly Appendix A

• Define review
criteria and key
indicators for
sample project.

• Identify several
review or indicator
measures that
may trigger new or
revised risks.

• Prepare for in-
classroom
reviews.

10, 11 Managing Software
Assurance (Recap
and Lessons
Learned)

• Define classroom
review criteria

• Conduct a “mock”
review including key
indicators and
revised risks

• Capture lessons
learned

Selected individuals or teams
present a review of their
sample project. Each
presentation is “scored” by
student reviewers.

 • Prepare for in-
classroom
reviews.

• Hand in an
annotated
presentation
(slides plus notes).

• Student reviewers
hand in scores
and rationale.

12 Making the Business
Case (Methods)

Review business case
methods

Apply one method to sample
project.

[Mead 2009] Apply two additional
methods to sample
project. Prepare
presentation.

13 Making the Business
Case (Application)

Present business case
for sample project

Selected presentations and
critique

[Mead 2009] Prepare for final
exam.

14 Final Exam

CMU/SEI-2011-TR-013 | 12

CMU/SEI-2011-TR-013 | 13

3 System Operational Assurance (SOpA) Course

3.1 Catalog Description

This course covers how to establish procedures to assure that systems in operation continue to
meet their security requirements and can respond to new threats. Students will learn about assur-
ance policies and procedures; assurance training; technologies for monitoring and controlling sys-
tems; evaluation of monitoring results; maintenance of operational systems; evaluation of mali-
cious code; responding to adverse events; and the actions necessary for maintaining business
survivability and continuity of operations.

3.2 Prerequisites

Knowledge of

• the software development life cycle (gained through an undergraduate software engineering
course)

• security issues (gained through an undergraduate Introduction to Security course, work expe-
rience, or remedial work)

3.3 Expected Student Outcomes

After completing this course, students will be able to

1. understand the role of business objectives and strategic planning in software and system

assurance

2. create appropriate security policies and procedures for system operations

3. understand the type of training needed by users and administrative personnel in secure system

operations

4. understand the capabilities and limitations of monitoring technologies for systems, services,
and personnel

5. evaluate operational monitoring results for system and service functionality and security

6. maintain and evolve operational systems while preserving assured functionality and security

7. evaluate malicious content and apply appropriate countermeasures

8. plan for and execute effective responses to operational system accidents, failures, and
intrusions

9. maintain business survivability and continuity of operations in adverse environments

CMU/SEI-2011-TR-013 | 14

3.4 List of Topics

Topics on operational procedures (Appendix A, Section 7.1) include

• the role of business objectives and strategic planning in assuring that operational systems con-
tinue to function as intended

• the development of security policies and procedures for secure system operations

• the selection of training for users and system administrative personnel in secure system opera-
tions

Topics on operational monitoring (Appendix A, Section 7.2) include

• the capabilities and limitations of monitoring technologies and the installation and configura-
tion/acquisition of monitors and controls for systems, services, and personnel

• the evaluation of operational monitoring results with respect to system and service functional-
ity and security

• the maintenance and evolution of operational systems while preserving assured functionality
and security. This includes understanding new threats and the countermeasures for addressing
them.

• the evaluation of malicious content and applying countermeasures to mitigate the risks and
contain the damage caused by such content

Topics on system control (Appendix A, Section 7.3) include

• control of operational systems, including planning for and executing effective responses to
operational system accidents, failures, and intrusions

• business survivability and continuity of operations in adverse environments

3.5 Sources

3.5.1 Primary

• Stoneburner, Gary; Hayden, Clark; & Feringa, Alexis. Engineering Principles for Informa-
tion Technology Security (A Baseline for Achieving Security). National Institute of Standards
and Technology (NIST), 2001.

Preferred

• International Organization for Standardization and International Electrotechnical Commission
(ISO/IEC). ISO/IEC 27002:2005 Information Technology—Security Techniques—Code of
Practice for Information Security Management. ISO/IEC, 2005.

This document is also used in Assurance Management. Purchase is required.

CMU/SEI-2011-TR-013 | 15

Backup if unable to purchase ISO standards

• Joint Task Force Transformation Initiative. Recommended Security Controls for Federal In-
formation Systems and Organizations (NIST Special Publication 800-53), Revision 3. Na-
tional Institute of Standards and Technology, August 2009. Updated May 2010.
http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-final_updated-
errata_05-01-2010.pdf

3.5.2 Secondary

• Caralli, Richard; Stevens, James F.; Bradford, J. Wilke; & Wilson, William R. The Critical
Success Factor Method: Establishing a Foundation for Enterprise Security Management
(CMU/SEI-2004-TR-010). Carnegie Mellon University, Software Engineering Institute, July
2004. http://www.sei.cmu.edu/library/abstracts/reports/04tr010.cfm

• The SANS Institute. Introduction to the SANS Security Policy Project.
http://www.sans.org/security-resources/policies/ (2011).

• CERT. CERT Resilience Management Model. http://www.cert.org/resilience/rmm.html
(2010).

See the Monitoring (MON), Organizational Training and Awareness (OTA), Incident Man-
agement (IMC), Vulnerability Analysis and Resolution (VAR), and Service Continuity (SC)
Process Areas. Free registration is required.

• Howard, Michael & Lipner, Steve. The Security Development Lifecycle: SDL: A Process for
Developing Demonstrably More Secure Software. Microsoft Press, 2006. An online version
of the Microsoft SDL is available at http://www.microsoft.com/security/sdl/.

Phase Five: Release is most applicable. Ignore discussions on privacy.

• McGraw, Gary; Chess, Brian; & Migues, Sammy. Building Security In Maturity Model
(BSIMM). http://bsimm.com/ (2010).

The Deployment practice is most applicable.

• Mell, Peter; Kent, Karen; & Nusbaum, Joseph. Guide to Malware Incident Prevention and
Handling (NIST Special Publication 800-83). National Institute of Standards and Technolo-
gy, November 2005. http://csrc.nist.gov/publications/nistpubs/800-83/SP800-83.pdf

• Scarfone, Karen; Grance, Tim; & Masone, Kelly. Computer Security Incident Handling
Guide (NIST Special Publication 800-61), Revision 1. National Institute of Standards and
Technology, March 2008. http://csrc.nist.gov/publications/nistpubs/800-61-rev1/SP800-
61rev1.pdf

• Swanson, Marianne; Bowen, Pauline; Phillips, Amy Wohl; Gallup, Dean; & Lynes, David.
Contingency Planning Guide for Federal Information Systems (NIST Special Publication
800-34), Revision 1. National Institute of Standards and Technology, May 2010.
http://csrc.nist.gov/publications/nistpubs/800-34-rev1/sp800-34-rev1_errata-Nov11-2010.pdf

CMU/SEI-2011-TR-013 | 16

3.6 Assignments

Students should complete individual assignments as described in the suggested schedule. Assign-
ments are discussed and assigned in the week shown and due the following week. Students should
also work on a team project that includes developing sample artifacts (policies and procedures,
training, monitoring and control approaches, etc.) for a software application with software assur-
ance requirements that is about to be deployed or is in operations/production.

3.7 In-Class Activities

In-class activities and demonstrations are described in the suggested schedule below. Note that
depending on the time available, the number of activities could be increased or decreased.

3.8 Suggested Schedule

The syllabus in Table 2 below defines in-class discussions and other activities that are intended to
reinforce lecture material and homework assignments.

Table 2: Syllabus for the System Operational Assurance (SOpA) Course

Week Topic In-Class Activities Suggested Readings Assignment

1 Introduction to
System Operational
Assurance

• Operational
policies and
procedures

• Operational moni-
toring

• System control

• Discussion of course
objectives, content, and
activities

• Introduce and discuss
selected software ap-
plication with software
assurance require-
ments that is about to
be deployed or is in
operations/
production. This
example will be used to
illustrate key learning
points throughout the
course.

• [Caralli 2004]
Chapter 4

• [ISO 2005]
ISO 27002
Sections 6, 10

• [Joint Task Force
2009] NIST 800-53
Chapters 2, 3

2 Policies and
Procedures for
Secure System
Operations

• Define policy,
standard, guide-
line, procedure

• Policy life cycle
(scope, implemen-
tation, enforce-
ment, review,
revision)

• Policy and proce-
dures for secure
system operations

Walk through an example
policy and one supporting
procedure for the example
software application.
Provide a template for the
assignment.

• [McGraw 2010]
BSIMM Compliance
and Policy (CP)
practice

• [ISO 2005]
ISO 27002
Section 5, 10.1

• [Joint Task Force
2009] NIST 800-53
Appendix F, specifi-
cally the policy and
procedures control
(-1) in each of the 18
security control
classes

• [SANS 2011]

Search for and identify
several examples of
reasonable operational
security policies related to
software assurance and
software security. Place in
template form.

CMU/SEI-2011-TR-013 | 17

Week Topic In-Class Activities Suggested Readings Assignment

3 Training

• Awareness and
training topics for
secure system
operations

• Finding relevant
training

• Defining an aware-
ness and training
program

Sketch out an example
awareness and training
program for the example
software application.

• [CERT 2010b]
CERT-RMM OTA

• [McGraw 2010]
BSIMM Training (T)
practice

• [ISO 2008]
ISO 27002
Section 8.2.2

• [Joint Task Force
2009] NIST 800-53
Appendix F, AT

Add details and populate
the in-class defined program
with relevant topics and
sources.

4 Operational
Monitoring
(Program and
Tools)

• Defining a monitor-
ing program and
monitoring
requirements for
software, systems,
and personnel.
Discuss roles and
responsibilities for
those executing the
program.

• Identifying monitor-
ing tools, tech-
niques, and me-
thods including
alert services

Define a starter monitoring
program for the example
software application.

• [CERT 2010b]
CERT-RMM MON

• [ISO 2008]
ISO 27002
Section 10.10

• [McGraw 2010]
BSIMM Penetration
Testing (PT)

• Also search for and
review incident
advisory and alert
services such as
those provided by
US-CERT.
http://www.us-
cert.gov

Search for and review open
source software monitoring
tools; establish criteria for
selecting and then select
the tools that fit best with
the example software
application.

5 Operational
Monitoring
(Information
Collection and
Reporting)

• Collecting and
recording monitor-
ing information

• Reporting monitor-
ing results

• Evaluating monitor-
ing results, taking
action where
required

Based on several selected
tools, discuss how they
collect, record, and report
monitoring results.

• Week 4 readings

• [ISO 2008]
ISO 27002
Section 12.4

• [Joint Task Force
2009] NIST 800-53
Appendix F (search
on “monitor” for
applicable controls)

Select one open source tool
and develop a short white
paper on how it collects,
records, and reports
information for a software
application of the student’s
choosing.

CMU/SEI-2011-TR-013 | 18

Week Topic In-Class Activities Suggested Readings Assignment

6 Maintaining
Operational
Systems (Managing
the Environment)

• Managing the
operational soft-
ware environment

• Configuration and
change manage-
ment

• Vulnerability man-
agement

• Explore Center for
Internet Security re-
sources.

• Explore Common
Vulnerability and
Exposures resources.
http://cve.mitre.org/

• Discuss how to use
these in an operational
setting.

• [ISO 2008]
ISO 27002
Sections 12.4, 12.5,
12.6

• [Joint Task Force
2009] NIST 800-53
Appendix F, CM, RA
(vulnerability scan-
ning)

• [McGraw 2010]
BSIMM Software
Environment (SE)
practice

• [McGraw 2010]
BSIMM Configura-
tion Management
and Vulnerability
Management
(CMVM) practice

• [CERT 2010b]
CERT-RMM VAR

• Center for Internet
Security
configuration
benchmarks
http://cisecurity.org/
en-us/

Write a short white paper
that describes how
vulnerabilities discovered
during operations could
have been addressed
earlier in the software
development life cycle. In
addition, for the example
software application, select
configuration benchmarks
and settings.

7 Evaluating
Malicious Content

• Malware
categories

• Malware
incident
prevention

• Malware incident
response (covered
more generally for
all types of security
incidents during
Weeks 8 and 9, so
may want to defer
this topic)

Possible demonstration of
several malware incidents
such as those described in
NIST 800-53 Appendix B

• [Mell 2005]
NIST 800-83

• [Scarfone 2008]
NIST 800-61
Section 5

• [ISO 2008]
ISO 27002
Section 10.4

• [Joint Task Force
2009] NIST 800-53
Appendix F, SI

Write a short white paper
that describes how security
technologies, such as those
listed in NIST 800-83
Appendix A, could be
deployed to protect the
example software
application in its production
environment. Take cost,
resources, schedule, and
technology priorities into
account.

CMU/SEI-2011-TR-013 | 19

Week Topic In-Class Activities Suggested Readings Assignment

8 Maintaining
Operational
Systems
(Security Incident
Management 1)

• Plan for incident
management.

• Detect and analyze
incidents.

• Walk through the
detection and analysis
of several security
incidents.

• Discuss various team
structures for incident
response.

• [Scarfone 2008]
NIST 800-61

• [CERT 2010b]
CERT-RMM IMC

• [ISO 2008]
ISO 27002
Section 13

• [Joint Task Force
2009] NIST 800-53
Appendix F, IR

• [Killcrece 2008]
https://buildsecurityin
.us-cert.gov/bsi/
articles/best-
practices/incident/
223-BSI.html

Each course team prepares
a short presentation that
describes the full life cycle
of an incident against the
example software
application, through
recovery. Do not include
postmortem review and
lessons learned in the
classroom presentation, but
capture this and submit it to
the course instructor.

9 Maintaining
Operational
Systems
(Security Incident
Management 2)

• Respond to and
recover from inci-
dents

• Incident postmor-
tem review and
lessons learned

• Walk through the
response to and
recovery from several
security incidents.

• Conduct an incident
postmortem review
and identify lessons
learned.

Same as Week 8 (Same as Week 8) Each
course team prepares a
short presentation that
describes the full life cycle
of an incident against the
example software
application, through
recovery. Do not include
postmortem review and
lessons learned in the
presentation, but capture
this and submit it to the
course instructor.

10 Incident
Presentations and
Discussion

• Team
presentations

Team presentations Same as Week 8 Write a short white paper
identifying lessons learned
and improvement actions
that should be taken as a
follow-up to each presented
incident.

11 Business Continuity
Planning

• Planning including
business impact
analysis

• Business impact
analysis

• Contingency plan-
ning and the SDLC
(NIST 800-34 Ap-
pendix F)

Conduct an example
business impact analysis
for a facility, a system, and
key personnel.

• [CERT 2010b]
CERT-RMM SC

• [Swanson 2010]
NIST 800-34

• [ISO 2008]
ISO 27002
Section 14

• [Joint Task Force
2009] NIST 800-53
Appendix F, CP

Write a short white paper of
a business impact analysis
for the example software
application.

CMU/SEI-2011-TR-013 | 20

Week Topic In-Class Activities Suggested Readings Assignment

12 Business Continuity
Exercise and Test

• Exercise and test

• Measure plan
effectiveness

• Conduct a table-top
exercise based on a
disruption of service
continuity.

• Define review criteria
for Week 13 presenta-
tions.

Same as Week 11 Each course team prepares
a short presentation/
demonstration of a table-top
exercise for the example
software application.

13 Business Continuity
Presentations

Team presentations.
Those not presenting
complete evaluations
using criteria defined in
Week 12 class.

Same as Week 11 Prepare for final exam.

14 Final Exam

CMU/SEI-2011-TR-013 | 21

4 Assured Software Analytics (ASA) Course

4.1 Catalog Description

This course covers analysis methods, techniques, and tools to help assure that newly developed
and acquired software, systems, and services meet their functional and security requirements. Stu-
dents will learn methods for structural and functional analysis of software components “in the
small” and analysis of software systems “in the large.” They will also learn concepts of testing for
assurance and developing auditable assurance evidence.

4.2 Prerequisites

• Assured Software Development 1 (ASD1) course

4.3 Corequisites

• Assured Software Development 2 (ASD2) course

4.4 Expected Student Outcomes

After completing this course, students will be able to

1. understand methods for assurance of system networks, architectures, and components

2. apply structuring methods to components to improve understandability and modifiability

3. apply reverse engineering to components to assess functionality and security properties

4. assess system architectures and develop and apply assurance plans

5. understand capabilities and limitations of methods, techniques, and tools for software analysis

6. evaluate testing and inspection methods, plans, and results for assuring software

7. apply methods for assuring acquired software and services

8. understand requirements for auditable assurance evidence

4.5 List of Topics

Topics on assurance analytics for new and existing software (Appendix A, Sections 6.2 and 6.3)
include

• analysis of assurance properties of system networks, architectures, and components

• application of structuring techniques to systematize the logic of existing software

• application of reverse engineering techniques to reveal functionality and security properties of
existing software

• capabilities and limitations of methods and tools for software analysis

• assessment of assurance capabilities and evidence produced by testing and inspections

CMU/SEI-2011-TR-013 | 22

• requirements for auditable assurance evidence

Topics on assurance analytics for acquisition (Appendix A, Section 6.4) include

• assurance of software acquired through supply chains, vendors, and open source

• assurance of acquired service functionality and security

4.6 Sources

4.6.1 Primary

• Linger, R.; Mills, H.; & Witt, B. Structured Programming: Theory and Practice. Addison-
Wesley, 1979.

Sessions 1-4 of this course provides an exposure to rigorous methods for assurance analysis
“in the small,” with applicability to particular system components identified as requiring de-
tailed investigation. The functional approach to software analysis is well suited to this objec-
tive. This textbook defines foundations for structuring and reverse engineering of software to
verify functionality. The book is out of print, but used copies can be obtained, and it will like-
ly be available online.

• Committee for Advancing Software-Intensive Systems Producibility; Computer Science and
Telecommunications Board; & Division on Engineering and Physical Sciences. Critical
Code: Software Producibility for Defense. National Academy of Sciences, 2010.

This volume describes “in the large” software assurance issues and solution strategies, chiefly
from a DoD perspective but with substantial applicability to commercial sectors.

4.6.2 Secondary

Given the pace of technology development, coursework in software assurance is, of necessity, a
moving target. The following references are suggestive of what is currently available. Additional
or different materials can be considered at the time of course delivery.

• Wysopal, Chris; Nelson, Lucas; Dai Zovi, Dino; & Dustin, Elfriede. The Art of Software Se-
curity Testing: Identifying Software Security Flaws. Addison-Wesley Professional, 2006.

This book reviews design and coding vulnerabilities that can arise in software, providing
guidance for avoiding them. It discusses customization of debugging tools to test the unique
aspects of programs and analyze the results to identify exploitable vulnerabilities.

• Eagle, Chris. The IDA Pro Book: The Unofficial Guide to the World’s Most Popular Disas-
sembler. No Starch Press, 2008.

This textbook describes a widely used tool that supports automated analysis of software ex-
ecutables, with the principal focus on malware.

• Holt, Alan & Huang, Chi-Yu, 802.11 Wireless Networks: Security and Analysis. Springer,
2010.

CMU/SEI-2011-TR-013 | 23

This textbook includes wireless network security analysis and methods. It provides a refer-
ence for assurance issues in wireless networks that support software and service operations
across organizations and that are themselves software enabled.

• Department of Homeland Security (DHS) Software Assurance (SwA) Acquisition Working
Group. Software Assurance in Acquisition: Mitigating Risks to the Enterprise.
https://buildsecurityin.us-cert.gov/swa/downloads/SwA_in_Acquisition_102208.pdf (2008).

This document provides a comprehensive view of assurance issues and procedures in soft-
ware acquisition. It is compiled from a government perspective but is relevant to private sec-
tor acquisition as well.

• Epstein, Jeremy; Matsumoto, Scott; & McGraw. “Software Security and SOA: Danger, Will
Robinson!” IEEE Security & Practice 4, 1 (January/February 2006): 80–83.

This paper highlights security assurance issues in service-oriented architectures.

• IBM. IBM Point of View: Security and Cloud Computing.
http://www.ibm.com/common/ssi/fcgi-
bin/ssialias?infotype=SA&subtype=WH&appname=SWGE_TI_SE_USEN&htmlfid=TIW14
045USEN&attachment=TIW14045USEN_HR.PDF (2009).

This paper discusses security issues in cloud computing environments.

• Thiagarajan, Val. Information Security Management: BS 7799.2:2002: Audit Check List for
SANS. http://www.sans.org/score/checklists/ISO_17799_checklist.pdf (2003).

This checklist covers many aspects of assurance auditing.

• National Institute of Standards and Technology (NIST). SAMATE—Software Assurance Me-
trics and Tool Evaluation. http://samate.nist.gov/Main_Page.html (2005).

This project is dedicated to the identification, testing, and measurement of tools for a variety
of purposes.

• Walton, G, Linger, R., and Longstaff, T. “Computational Evaluation of Software Security
Attributes,” 1–10. Proceedings of the 42nd Hawaii International Conference on System
Sciences. Los Alamitos, CA, Jan. 2009. IEEE Computer Society Press, 2009.

This paper describes security attribute assurance in terms of implementations and how to
check them. While the paper discusses methods for computational evaluation of implementa-
tions, the manual methods described in the course can be effective as well.

CMU/SEI-2011-TR-013 | 24

4.7 Assignments

The suggested readings and homework assignments at the time of course offering should reflect
technology evolution and topic emphasis over time. Representative team assignments are sug-
gested in the syllabus below. Teams can be defined for the duration of the course, typically with
four to six members, and can select a leader for each assignment. Reports to the class can be
graded and should be short, yet comprehensive at an appropriate level of abstraction. This course
is also ideal for longer duration, team-based case studies selected by the instructor. Assignments
are discussed and assigned in the week shown and due the following week.

4.8 In-Class Activities

In-class activities and demonstrations are described in the suggested schedule below. Note that
depending on the time available, the number of activities could be increased or decreased.

4.9 Suggested Schedule

The syllabus in Table 3 below defines in-class discussions and other activities that are intended to
reinforce lecture material and homework assignments. Guest speakers with real-world experience
in particular course topics should also be considered.

Table 3: Syllabus for the Assured Software Analytics (ASA) Course

Week Topic In-Class Activities Suggested
Readings

Assignment

1 Introduction

• Course structure and
objectives; consequences of
exploitations and failures for
various types of systems; goals
of assurance analytics

• Overview of assurance
analytics for new and legacy
applications and networks, and
for acquired software and
services

• Roadmap for Weeks 2-5 as a
brief exposure to rigorous
software analysis of sequential
logic for assurance “in the
small”

• Foundations I: Programs as
implementations of
mathematical functions;
fundamental control structures;
design language forms

• Discuss what it means to
have “software-defined”
products, such as aircraft
avionics, and businesses,
such as banking or online
retailing.

• Discuss the
consequences of
exploitations and failures
for various systems, such
as banking, power
generation,
telecommunications,
aircraft avionics, video
games, and social
networks.

• Discuss and define
imagined assurance
requirements for a
university information
system, from business
and technical
perspectives.

[Linger 1979]
Chapter 3

CMU/SEI-2011-TR-013 | 25

Week Topic In-Class Activities Suggested
Readings

Assignment

2 Foundations II: Analysis of
Program Structure

• The Structure Theorem and its
constructive proof

• Application of the
constructive proof to
program structuring

• Comparison of unstructured
and structured logic

• Selected team reports
and discussion

• Apply the Structure
Theorem proof to
transform the logic of a
small unstructured
program expressed in
design language form.

[Linger 1979]
Chapter 4

Team application of
the Structure
Theorem proof to
structuring a given
spaghetti-logic
program expressed
in design language
form

3 Foundations III: Analysis of
Program Functionality

• The algebraic structure of
structured programs as a basis
for reverse engineering

• Reverse engineering as a
documentation process for
control structures

• Reverse engineering of control
structure functionality through
trace table analysis

• Data structures for verification
in design language form

• Selected team reports
and discussion

• Apply reverse
engineering techniques
to a small program
expressed in design
language form

[Linger 1979]
Chapter 5

Team reverse
engineering of the
function of a given
structured program
expressed in
design language
form

4 Foundations IV: Verification of
Program Functionality

• The Correctness
Theorem

• Application of trace table
analysis to verification of
program functionality

• Selected individual
reports and discussion

• Verify the functionality of
a small program in
design language form

[Linger 1979]
Chapter 6

Individual
verification of the
function of a given
structured program
in design language
form

5 Assurance of Software Systems

• Processes for scaling up to
“assurance in the large”

• System environment,
architecture, component,
interaction, and dependency
discovery

• Assessing system
requirements, specifications,
designs, and history of
development and evolution

• Architecture properties
including modularity, resource
sharing, quality, documentation,
and
traceability

• Assessing information loss from
poor documentation,
complexity, and lack of
traceability

• Complexity reduction and
quality improvement

Selected team reports and
discussion of findings

[Committee
2010]
Chapters 2-4

Team investigation
of a given
architecture for a
real system to
assess
architectural
properties, quality,
and information
availability, and
develop a plan for
assurance that
includes both “in
the large” and “in
the small” aspects

CMU/SEI-2011-TR-013 | 26

Week Topic In-Class Activities Suggested
Readings

Assignment

6 Assurance of Security Properties

• Assuring security properties,
such as authentication,
authorization, non-repudiation,
confidentiality, privacy, integrity,
and availability

• Assuring encryption
methods used in security
implementations

Selected individual reports
and discussion

[Walton 2009] Individual
web-search
determination of
best practices in
assuring security
properties

7 Methods and Tools I: Application
Level

• Survey of capabilities and
limitations of analysis tools for
evaluating and improving
functionality and security at the
application level, with emphasis
on detection of vulnerabilities

• Introduction to specific popular
tools for static and dynamic
analysis

• Special topic: overview of Ida
Pro tool for malware analysis

Selected team reports and
discussion

[NIST 2005]

Selected
readings on
tools discussed
in the session

Team evaluation of
assigned tool
capabilities and
limitations for
supporting software
assurance at the
application level,
for both static and
dynamic analysis

8 Methods and Tools II: Network
Level

• Survey of capabilities and
limitations of analysis tools for
evaluating and improving
functionality and security at the
network level, with emphasis on
network analysis, and
monitoring through intrusion
and anomaly detection methods

• Introduction to specific popular
tools for network analysis and
monitoring

Selected team reports and
discussion

Selected
readings on
tools discussed
in the session

Team evaluation of
assigned tool
capabilities and
limitations for
supporting software
assurance at the
network level, for
both static and
dynamic analysis

9 Assurance Testing

• Evaluating test and inspection
plans from an assurance
perspective

• Analyzing vulnerability
detection capabilities of test
and inspection methods

• Analyzing threat environment
coverage of penetration tests

• Assessing software function
and security based on test and
inspection results

Selected team reports and
discussion

[Wysopal 2006]
Chapters 4, 5

Team development
of a penetration
test plan for an
assigned
organization, for
example, an online
retailer, including
an assessment of
the threat
environment and
expected
assurance
evidence from the
testing

CMU/SEI-2011-TR-013 | 27

Week Topic In-Class Activities Suggested
Readings

Assignment

10 Assuring Acquired Software

• Sources, properties, benefits,
and risks of acquired software,
including vendor supply chains,
open source, and COTS

• Evaluating supplier
documentation and assurance
claims

• Assurance methods for
acquired software, including
testing and code analysis

• Selected team reports
and discussion

• Assurance analysis of a
downloaded COTS
program

[DHS 2008] Team web-search
determination of
best practices for
assuring
functionality and
security of acquired
software

11 Assuring Acquired Services

• Software service properties,
requirements, and delivery,
including SOA and cloud
computing

• Service properties including
scalability, maintainability,
reliability, availability,
performance, and security

• Service and network provider
assessment, Service Level
Agreement definition, and
service metrics and monitoring

• Selected team reports

• Define key elements of
an example Service
Level Agreement with a
cloud computing vendor,
such as for university
network services

• Create a plan for ongoing
assurance of service
delivery, including
metrics.

[IBM 2009]

websites that
track reliability
of cloud
computing
services
([CloudFail
2011] is one.)

Team web-search
determination of
top 10 best
practices for
assuring
functionality and
security of acquired
services

12 Assurance Evidence

• Business, legal, and regulatory
requirements for assurance
evidence

• What does and does not
constitute auditable evidence

• Assurance auditing processes,
including checklist–based and
tool-augmented approaches

• Assurance auditing for SOA
and cloud computing
environments

• Team reports

• Discussion of value and
shortcomings of
checklist-based and tool-
based auditing
processes.

• Discussion of audit
evidence in cloud
computing.

• Discussion of embedding
assurance auditing into
business processes.

[Thiagarajan
2003]

Team web-search
investigation of
legal and regulatory
requirements for
assurance
evidence and
auditing, plus best
practices and
checklists

13 Assurance for Human Factors,
and Course Review

• Assurance aspects of human
elements of systems

• Sources of human errors and
malicious intent that impact
security, including insider
aspects, and how to address
them

• Assessing user training and
monitoring for human-computer
interaction

• Course review

• Selected team reports
and discussion

• Discussion of assurance
for human elements of
systems, including
preventative and
corrective actions for
errors and malicious
behavior

 • Team web-
search
investigation of
human errors
and malicious
intent that have
caused security
problems, and
means to avoid
them

• Individual
questions for
course review

14 Final Exam

CMU/SEI-2011-TR-013 | 28

CMU/SEI-2011-TR-013 | 29

5 Assured Software Development 1 (ASD1) Course

5.1 Catalog Description

This course covers the fundamentals of incorporating assurance practices, methods, and technolo-
gies into software development and acquisition life-cycle processes and models. With this founda-
tion, the course provides students with rigorous methods for eliciting software and system assur-
ance requirements; using threat identification, characterization, and modeling; assurance risk
assessment; and misuse/abuse cases. Students will also learn how to evaluate methods and envi-
ronments for creating software and systems that meet their functionality and security require-
ments.

5.2 Prerequisites

Knowledge of

• the software development life cycle (SDLC) and its activities (gained through an undergra-
duate software engineering course, software development work experience, or remedial work)

• security issues (gained through an undergraduate Introduction to Security course, work expe-
rience, or remedial work)

5.3 Expected Student Outcomes

After completing this course, students will be able to

1. understand life-cycle models and processes for newly developed software systems

2. understand life-cycle models and processes for the acquisition, supply, and service of a

software system

3. use methods, techniques, and tools to assess the applicability of assurance processes and
practices for typical life-cycle phases, such as requirements engineering, architecture and

design, coding, test, evolution, acquisition, and retirement

4. elicit and analyze requirements for assured software, based on threat modeling, identification

of attack patterns, and misuse/abuse cases

5. apply security requirements engineering methods in developing assurance requirements

5.4 List of Topics

Topics on new development of software life-cycle processes (Appendix A, Section 1.1.1) and in-
tegration, assembly, and deployment of those processes (Appendix A, Section 1.1.2) include

• the software process: understanding life-cycle processes associated with full development of a
new software system. This includes a general understanding of process models such as itera-
tive development, spiral model, waterfall, and agile, as well as life-cycle activities.

CMU/SEI-2011-TR-013 | 30

Topics on the operation and evolution of software life-cycle processes (Appendix A, Section
1.1.3) include

• understanding processes that guide the operation of the software system and its evolution over
time

Topics on the acquisition, supply, and service of software life-cycle processes (Appendix A, Sec-
tion 1.1.4) include

• understanding processes that support the acquisition, supply, or service of a software system.
This is where processes such as Common Criteria could be taught.

Topics on the process and practice assessment of software assurance processes and practices (Ap-
pendix A, Section 1.2.1) include

• the software assurance process: learning and applying methods, procedures, and tools used to
assess assurance processes and practices. This is where complete life-cycle processes such as
CLASP could be taught and best practices models such as the BSIMM, SAFECode, and
OWASP could be taught.

Topics on the software assurance integration into SDLC phases (Appendix A, Section 1.2.2) in-
clude

• the software assurance process: learning how to integrate and apply assurance practices into
typical life-cycle phases, such as requirements engineering, architecture and design, coding,
test, evolution, acquisition, and retirement. The focus here is specifically on practices that im-
prove assurance. This topic could include Microsoft SDL and activities that apply to the early
life-cycle phases, such as threat modeling, assurance risk assessment,4 attack trees, and mi-
suse/abuse cases.

Topics on the software assurance integration into SDLC phases (Appendix A, Section 1.2.2) in-
clude

• how to evaluate the capabilities and limitations of technical environments, languages, and
tools with respect to creating assured software functionality and security. Of particular inter-
est are environments that support assurance, languages that provide fewer opportunities to in-
sert vulnerabilities, and tools used to improve assurance at various phases in the life cycle.

Topics on improvement of assurance technology (Appendix A, Section 6.1.2) include

• how to assess and recommend improvements in assurance methods as needed within project
constraints, including cost, schedule, functionality, and quality factors

4 Note that risk assessment is covered to the extent that it is needed for requirements engineering. The risk man-

agement process is fully covered in the Assurance Management course.

CMU/SEI-2011-TR-013 | 31

Topics on the assured software development methods (Appendix A, Sections 6.2 and 6.2.1 [re-
quirements]) include

• rigorous methods for developing assured system and software requirements and specifica-
tions, and how to apply those methods. This includes requirements engineering processes that
are specific to assured systems, as well as risk analysis, requirements elicitation, and prioriti-
zation methods. As part of these methods, students will need to apply techniques such as
threat modeling, attack trees, and misuse/abuse cases. This topic also includes determining
whether the requirements are feasible and inspecting them.

5.5 Sources

5.5.1 Primary

• Merkow, Mark S. & Raghavan, Lakshmikanth. Secure and Resilient Software Development.
CRC Press, 2010.

Abstract from publisher

Although many software books highlight open problems in secure software development, few
provide easily actionable, ground-level solutions. Breaking the mold, Secure and Resilient
Software Development teaches you how to apply best practices and standards for consistent
and secure software development. It details specific quality software development strategies
and practices that stress resilience requirements with precise, actionable, and ground-level in-
puts.

Providing comprehensive coverage, the book illustrates all phases of the secure software de-
velopment life cycle. It shows developers how to master non-functional requirements includ-
ing reliability, security, and resilience. The authors provide expert-level guidance through all
phases of the process and supply many best practices, principles, testing practices, and design
methodologies.

• Allen, Julia H.; Barnum, Sean; Ellison, Robert J.; McGraw, Gary; & Mead, Nancy R. Soft-
ware Security Engineering: A Guide for Project Managers. Addison-Wesley Professional,
2008.

Abstract from publisher

Software that is developed from the beginning with security in mind will resist, tolerate, and
recover from attacks more effectively than would otherwise be possible. While there may be
no silver bullet for security, there are practices that project managers will find beneficial.
With this management guide, you can select from a number of sound practices likely to in-
crease the security and dependability of your software, both during its development and sub-
sequently in its operation.

Software Security Engineering draws extensively on the systematic approach developed for
the Build Security In (BSI) Web site. Sponsored by the Department of Homeland Security
Software Assurance Program, the BSI site offers a host of tools, guidelines, rules, principles,
and other resources to help project managers address security issues in every phase of the
software development life cycle (SDLC). The book’s expert authors, themselves frequent

CMU/SEI-2011-TR-013 | 32

contributors to the BSI site, represent two well-known resources in the security world: the
CERT Program at the Software Engineering Institute (SEI) and Cigital, Inc., a consulting firm
specializing in software security.

This book will help you understand why

− Software security is about more than just eliminating vulnerabilities and conducting pe-
netration tests

− Network security mechanisms and IT infrastructure security services do not sufficiently
protect application software from security risks

− Software security initiatives should follow a risk-management approach to identify
priorities and to define what is “good enough”—understanding that software security
risks will change throughout the SDLC

− Project managers and software engineers need to learn to think like an attacker in order
to address the range of functions that software should not do, and how software can bet-
ter resist, tolerate, and recover when under attack

• Howard, Michael & Lipner, Steve. The Security Development Lifecycle: SDL: A Process for
Developing Demonstrably More Secure Software. Microsoft Press, 2006. An online version
of the Microsoft SDL is available at http://www.microsoft.com/security/sdl/.

Abstract from publisher

Your in-depth, expert guide to the proven process that helps reduce security bugs. Your cus-
tomers demand and deserve better security and privacy in their software. This book is the first
to detail a rigorous, proven methodology that measurably minimizes security bugs—the Secu-
rity Development Lifecycle (SDL). In this long-awaited book, security experts Michael How-
ard and Steve Lipner from the Microsoft Security Engineering Team guide you through each
stage of the SDL—from education and design to testing and post-release. You get their first-
hand insights, best practices, a practical history of the SDL, and lessons to help you imple-
ment the SDL in any development organization.

Discover how to:

− Use a streamlined risk-analysis process to find security design issues before code is
committed

− Apply secure-coding best practices and a proven testing process

− Conduct a final security review before a product ships

− Arm customers with prescriptive guidance to configure and deploy your product more
securely

− Establish a plan to respond to new security vulnerabilities

− Integrate security discipline into agile methods and processes, such as Extreme

− Programming and Scrum

Includes a CD featuring:

− A six-part security class video conducted by the authors and other Microsoft security ex-
perts

CMU/SEI-2011-TR-013 | 33

− Sample SDL documents and fuzz testing tool

5.5.2 Secondary

• Ahern, Dennis M.; Clouse, Aaron; & Turner, Richard. CMMI Distilled: A Practical Introduc-
tion to Integrated Process Improvement. 3rd ed. Addison-Wesley Professional, 2008.

• Garcia, Suzanne & Turner, Richard. CMMI Survival Guide: Just Enough Process Improve-
ment. Addison-Wesley Professional, 2006.

• Department of Homeland Security (DHS). Security Requirements Engineering (articles).
https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements.html (2010).

• Department of Homeland Security (DHS). Build Security In, Secure Software Development
Life Cycle (SDLC) Process (articles). https://buildsecurityin.us-
cert.gov/bsi/articles/knowledge/sdlc.html (2008-2009).

• Graham, Dan. Introduction to the CLASP Process. https://buildsecurityin.us-
cert.gov/bsi/articles/best-practices/requirements/548-BSI.html (2006).

• Ingalsbe, Jeffrey A.; Kunimatsu, Louis; Baeten, Tim; & Mead, Nancy R. “Threat Modeling:
Diving into the Deep End.” IEEE Software 25, 1 (January/February 2008).
https://buildsecurityin.us-cert.gov/bsi/resources/articles/932-BSI.html

This document describes industry experience with threat modeling.

• Mansourov, Nicolai & Campara, Djenana. System Assurance: Beyond Detecting Vulnerabili-
ties. Elsevier, 2011.
http://www.elsevierdirect.com/ISBN/9780123814142/System-Assurance

Abstract from Publisher

In this day of frequent acquisitions and perpetual application integrations, systems are often
an amalgamation of multiple programming languages and runtime platforms using new and
legacy content. Systems of such mixed origins are increasingly vulnerable to defects and sub-
version. System Assurance: Beyond Detecting Vulnerabilities addresses these critical issues.

• McGraw, Gary; Chess, Brian; & Migues, Sammy. Building Security In Maturity Model
(BSIMM). http://www.bsimm.com/ (2010).

The BSIMM describes best practices based on a survey of a large number of organizations.

• OpenSAMM Project. Software Assurance Maturity Model (SAMM) v1.0.
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model (2009).

This document provides a maturity model that is specific to software assurance.

• CERT. SQUARE (educational materials for download). Software Engineering Institute, Car-
negie Mellon University. http://www.cert.org/sse/square.html (2010).

CMU/SEI-2011-TR-013 | 34

This document includes a set of lectures and notes with an overview of security requirements
engineering and details of the SQUARE Method. A team project for SQUARE is also in-
cluded.

• Howard, Michael & Lipner, Steve. The Security Development Lifecycle: SDL: A Process for
Developing Demonstrably More Secure Software. Microsoft Press, 2006. An online version
of the Microsoft SDL is available at http://www.microsoft.com/security/sdl/.

• Massacci, Fabio; Mylopoulos, John; & Zannone, Nicola. “Computer-Aided Support for Se-
cure Tropos.” Automated Software Engineering 14, 3 (September 2007): 341–364.

• Zannone, Nicola. “The Si* Modeling Framework: Metamodel and Applications.” Internation-
al Journal of Software Engineering and Knowledge Engineering 19, 5 (August 2009): 727–
746.

5.6 Assignments

Students can work on a team project for early assurance life-cycle activities, particularly those
that result in a consistent and complete set of assurance requirements. Such a project is provided
in the SQUARE educational workshop materials. To the extent possible, the assignments can be
related to the project.

Additional assignments that do not exactly fit the project can be done as standalone ones. Exam-
ples of project and individual assignments are given in the table below. Assignments are discussed
and assigned in the week shown and due the following week.

5.7 In-Class Activities

In-class activities and demonstrations are described in the suggested schedule below. Note that
depending on the time available, the number of activities could be increased or decreased.

5.8 Suggested Schedule

The syllabus in Table 4 below defines in-class discussions and other activities that are intended to
reinforce lecture material and homework assignments.

CMU/SEI-2011-TR-013 | 35

Table 4: Syllabus for the Assured Software Development (ASD1) Course

Week Topic In-Class Activities Suggested Readings Assignment

1 Software process
overview

Life-cycle processes
including spiral,
waterfall, agile, and
associated activities.
Discuss the entire
spectrum of life-cycle
activities including
evolution.

Discuss when a
specific life-cycle
process is particularly
appropriate.

• [Merkow 2010]

• [Howard 2006]
Chapters 1-4

• [Allen 2008]
Chapter 1

• [Ahern 2008]
Chapter 1

• [Mansourov 2011]
Chapters 1, 2, 3

• The instructor may
choose not to assign all of
these readings, depend-
ing on how soon the
instructor wants to start
emphasizing assurance
vs. ordinary development.

• Trade off life-cycle
processes to
determine which one
might be the best fit for
a specific project. Con-
sider processes such
as waterfall, spiral,
agile, iterative
development, and so
on.

• Project: Assign roles for
the project. Select a
life-cycle process for
the project. Discuss the
pros and cons of each
process approach.

2 Discuss supply
chain, acquisition,
and service. Discuss
Common Criteria.

• Discuss supply
chain risks and the
pros and cons of
rigorous
processes such as
Common Criteria.

• Discuss situations
when such a
process is called
for.

• [Ellison 2010b]

• [Mead 2008]

• [Mansourov 2011]
Chapter 4

• Modify a standard life-
cycle process, such as
agile or spiral, to em-
phasize assurance.

• Project: Identify uses of
acquired/COTS soft-
ware on the project and
perform tradeoff analy-
sis to select COTS.
Indicate where/how
Common Criteria might
be applied.

3 Introduce processes
that are specific to
software assurance,
such as CLASP and
Secure Tropos.

Discuss the pros and
cons of standard
development process
models when applied
to assured systems.

• [Mouratidis 2010]

• [Haley 2008]

• [Mouratidis 2007]
Pages 16-43

• [Graham 2006]

Project: Sketch out how
CLASP or Secure Tropos
could be applied to the
project.

4 Teach BSIMM,
SAFECode and
OWASP best
practices.

Discuss the pros and
cons of security
process models and
security maturity
models, such as
CLASP, BSIMM, and
SAMM, and best
practices such as
those described by
SAFECode.

• [McGraw 2010]

• [OpenSAMM Project 2009]

• [SAFECode 2008a]

• [OpenSAMM 2009]

• [SAFECode 2008b]

• Students should look at
the top level of each of
these references and
compare the elements.
They do not need to read
hundreds of pages of
detailed discussion.

Project: Determine which of
the BSIMM best practices
should be applied to the
project.

CMU/SEI-2011-TR-013 | 36

Week Topic In-Class Activities Suggested Readings Assignment

5 Methods for
evaluation of
environments,
languages, and tools.

 • [Howard 2006]
Chapter 21

• [Massacci 2007]

• [Zannone 2009]

Project: Select an
environment that could be
used on the project. Identify
tools that could be used.

6 Teach quality factors
and quality
assessment methods
as they relate to
early life-cycle
activities. Identify the
different types of
stakeholders and
also likely developer
roles.

Role-play part of a
QAW with some
students playing
developer roles and
others playing
stakeholder roles.

[Barbacci 2003] Project: Perform a QAW to
understand the importance
of security relative to other
quality factors.

7 Teach practices that
improve assurance
at each life-cycle
phase. Include
requirements
engineering,
architecture, and
design. Include
coding, test,
evolution,
acquisition, and
retirement. Teach
practices such as
threat modeling,
assurance risk
assessment, attack
trees, and misuse
and abuse cases.
(carries into the
following week).

Discuss ways in which
the Microsoft SDL
could be applied in the
early life-cycle
phases.

• [Allen 2008]
Chapters 2 & 3

• [Ahern 2008]
Chapter 2

• [Howard 2006]
Chapters 8-9

• [Mansourov 2011]
Chapter 5

• [Merkow 2010]

• [DHS 2008-2009b]
SDLC
https://buildsecurityin.us-
cert.gov/bsi/articles/
knowledge/sdlc.html
Risk assessment
https://buildsecurityin.us-
cert.gov/bsi/articles/best-
practices/risk/250-BSI.html

• Instructors may choose not
to assign all of these
readings, depending on
which practices are viewed
as most important or most
practical.

Project: Perform risk
analysis specifically for
security.

8 Teach practices such
as threat modeling,
assurance risk
assessment, attack
trees, and misuse/
abuse cases.

Discuss security risk
analysis results.

• [Allen 2008]
Chapter 3

• [DHS 2010]

• [DHS 2008-2009a]
Attack Patterns
https://buildsecurityin.us-
cert.gov/bsi/articles/
knowledge/attack.html

• [Ingalsbe 2008]

• [Alexander 2003]

• Develop misuse cases
for a small problem.

• Project: Perform threat
modeling.

CMU/SEI-2011-TR-013 | 37

Week Topic In-Class Activities Suggested Readings Assignment

9 Tools that can be
used in the early life-
cycle phases, either
as part of a larger
environment such as
Rational or
standalone tools
such as SQUARE

 • [IBM 2011]
Rational [DOORS,
RequisitePro]

• [CERT 2010c]

• [DHS 2010]

• The instructor may choose
to add articles/material on
tools and environments.

Project: Develop misuse
and abuse cases.

10 Teach a variety of
elicitation methods,
including those that
are generic and
those that are
specific to security
requirements.

Perform security
requirements
elicitation activity, with
some students playing
the roles of
requirements
engineers, and others
playing the role of
stakeholders.

• [Allen 2008]
Chapter 3

• [DHS 2008-2009a]
Requirements elicitation
https://buildsecurityin.us-
cert.gov/bsi/articles/best-
practices/requirements/53
3-BSI.html
https://buildsecurityin.us-
cert.gov/bsi/articles/best-
practices/requirements/53
2-BSI.html

Project: Apply requirements
elicitation method(s) to
identify requirements.

11 Ways of classifying
or categorizing
security
requirements. How to
distinguish
requirements from
architectural and
design features, and
mechanisms

 • [Allen 2008]
Chapter 3

• [CERT 2010c]
Report material on
categorization

• If this does not take the
whole week, the Week 12
material, which can easily
take more than one week,
can be started early.

Project: Perform
requirements feasibility
analysis and classify or
categorize requirements to
ensure they are valid.

12 Requirements
prioritization
methods, including
group
methods, formal
cost/benefit tradeoff
analysis, and
factoring risk into the
tradeoff analysis
process

 • [Allen 2008]
Chapter 3

• [DHS 2008-2009a]
Articles on requirements
prioritization
https://buildsecurityin.us-
cert.gov/bsi/articles/best-
practices/requirements/54
5-BSI.html
https://buildsecurityin.us-
cert.gov/bsi/articles/best-
practices/requirements/53
4-BSI.html
https://buildsecurityin.us-
cert.gov/bsi/articles/best-
practices/requirements/11
55-BSI.html
https://buildsecurityin.us-
cert.gov/bsi/articles/best-
practices/requirements/55
2-BSI.html

Project: Prioritize assurance
requirements using
cost/value or risk methods.

CMU/SEI-2011-TR-013 | 38

Week Topic In-Class Activities Suggested Readings Assignment

13 Requirements peer
reviews, inspections,
and traceability of
requirements to
assets and security
goals

Perform part of a
security requirements
inspection,
emphasizing
traceability and
missing requirements.

• [Wikipedia 2011]

• [CERT 2010c]
Assets and security goals
http://www.sei.cmu.edu/
library/abstracts/reports
/05tr009.cfm
http://www.sei.cmu.edu/
library/abstracts/reports/
05tr009.cfm

Project: Conduct a
requirements inspection
that is specific to assurance
on the student team
projects. Teams participate
in inspection of other teams’
requirements. Perform
traceability.

14 Project
presentations and
exam

CMU/SEI-2011-TR-013 | 39

6 Assured Software Development 2 (ASD2) Course

6.1 Catalog Description

This course covers rigorous methods for specifying assurance requirements and for architecting
and designing software and systems to meet those requirements. Such methods include require-
ments specification; applying security principles; threat identification, characterization, and mod-
eling; misuse/abuse cases; architectural risk analysis; architectural vulnerability assessment; and
technology-specific security guidelines.

6.2 Prerequisites/Corequisites

The following can be either a prerequisite or a corequisite:

• ASD1 course

6.3 Expected Student Outcomes

After completing this course, students will be able to

1. specify and validate requirements for assured software

2. develop architectures that demonstrate that software and systems will satisfy their assurance

requirements

3. design software and systems that fulfill architectural specifications for assurance

4. evaluate the capabilities and limitations of technical environments, languages, and tools when
developing assured software

5. use assurance architecture and design methods, such as architectural risk analysis (including
attack resistance, attack tolerance, and attack resilience), threat modeling, attack patterns,
misuse/abuse cases, attack surface, design principles (such as least privilege and failing

securely), and technology-specific guidelines

6. apply security technologies in specifying requirements and in developing architectures and
designs, such as encryption, fault tolerance, intrusion detection, access controls, and

authentication

7. understand design approaches and tactics for achieving quality attributes, including security

6.4 List of Topics

Topics on software assurance integration into SDLC phases (Appendix A, Section 1.2.2) include

• how to integrate assurance practices into typical life-cycle phases (requirements engineering,
architecture, and design)

CMU/SEI-2011-TR-013 | 40

Topics on the evaluation of assurance technology (Appendix A, Section 6.1.1) include

• how to evaluate capabilities and limitations of technical environments, languages, and tools
with respect to creating assured software functionality and security. Of particular interest are
environments that support assurance, as well as languages that provide fewer opportunities to
insert vulnerabilities, and tools used to improve assurance at various phases in the life cycle.
In this course, we will be particularly interested in methods, tools, and environments that sup-
port specification, architecture, and high-level design.

Topics on the improvement of assurance technology (Appendix A, Section 6.1.2) include

• how to assess and recommend improvements in assurance technology as needed within
project constraints, including cost, schedule, functionality, and quality factors. In this course,
we will be particularly interested in improvements in technologies that support specification,
architecture, and high-level design.

Topics on assured software development methods (Appendix A, Section 6.2.1: specification, ar-
chitecture, and design) include

• how to inspect or otherwise verify specifications, architectures, and designs. Also, rigorous
methods for developing assured system and software specifications, architectures, and high-
level designs and how to apply those methods. This includes the use of formal specification
languages that are specific to assurance, the use of architectural models, and the ability to per-
form architectural risk analysis and architectural tradeoff analysis. It also includes the use of
design models and rigorous design languages to document and validate design. Students
should understand how to do traceability from requirements through design and be able to ex-
tend this knowledge to code.

6.5 Sources

6.5.1 Primary

• Allen, Julia H.; Barnum, Sean; Ellison, Robert J.; McGraw, Gary; & Mead, Nancy R. Ch. 4,
“Secure Software Architecture and Design,” 115-150. Software Security Engineering: A
Guide for Project Managers. Addison-Wesley Professional, 2008.

Abstract from publisher

Software that is developed from the beginning with security in mind will resist, tolerate, and
recover from attacks more effectively than would otherwise be possible. While there may be
no silver bullet for security, there are practices that project managers will find beneficial.
With this management guide, you can select from a number of sound practices likely to in-
crease the security and dependability of your software, both during its development and sub-
sequently in its operation.

Software Security Engineering draws extensively on the systematic approach developed for
the Build Security In (BSI) Web site. Sponsored by the Department of Homeland Security
Software Assurance Program, the BSI site offers a host of tools, guidelines, rules, principles,
and other resources to help project managers address security issues in every phase of the

CMU/SEI-2011-TR-013 | 41

software development life cycle (SDLC). The book’s expert authors, themselves frequent
contributors to the BSI site, represent two well-known resources in the security world: the
CERT Program at the Software Engineering Institute (SEI) and Cigital, Inc., a consulting firm
specializing in software security. This book will help you understand why

− Software security is about more than just eliminating vulnerabilities and conducting pe-
netration tests

− Network security mechanisms and IT infrastructure security services do not sufficiently
protect application software from security risks

− Software security initiatives should follow a risk-management approach to identify
priorities and to define what is “good enough”—understanding that software security
risks will change throughout the SDLC

− Project managers and software engineers need to learn to think like an attacker in order
to address the range of functions that software should not do, and how software can bet-
ter resist, tolerate, and recover when under attack

• McGraw, Gary; Chess, Brian; & Migues, Sammy. Building Security In Maturity Model
(BSIMM). http://www.bsimm.com/ (2010).

Software Security Framework describes twelve practices organized into four domains. These
practices are used to organize the 109 BSIMM activities. All examples are real examples
drawn from field observation.

The software security best practices (or “touchpoints”) have their basis in good software en-
gineering and involve explicitly pondering security throughout the software development life-
cycle. This means knowing and understanding common risks (including implementation bugs
and architectural flaws), designing for security, and subjecting all software artifacts to tho-
rough, objective risk analyses and testing. The practices include code review using static
analysis tools, architectural risk analysis, penetration and risk-based security testing, abuse
case development, security requirements and operations.

6.5.2 Secondary

Note: The list below is extensive, but not exhaustive, including several sources with similar ma-
terial. It is up to the course instructor to select the source that best fits the specific delivery strate-
gy.

• Merkow, Mark S. & Raghavan, Lakshmikanth. Secure and Resilient Software Development.
CRC Press, 2010.

• Mouratidis, Haralambos & Paolo, Giorgini. Integrating Security and Software Engineering:
Advances and Future Visions. Idea Group Publishing, 2007.

This book draws upon research and techniques from a range of software engineering activities
including requirements engineering and specification, software patterns and design, and me-
thods and process of model-driven development.

• Pressman, Roger S., Software Engineering: A Practitioner’s Approach, 6th ed. McGraw Hill,
2009.

CMU/SEI-2011-TR-013 | 42

• Howard, Michael & Lipner, Steve. The Security Development Lifecycle: SDL: A Process for
Developing Demonstrably More Secure Software. Microsoft Press, 2006. An online version
of the Microsoft SDL is available at http://www.microsoft.com/security/sdl/.

• Altran Group. Correctness by Construction. http://www.altran-praxis.com/cbyc.aspx (Ac-
cessed 2010).

• SWIFT System. Swift: making web applications secure by construction.
http://www.cs.cornell.edu/jif/swift/ (Accessed 2010).

• Schumacher, Markus; Fernandez-Buglioni, Eduardo; Hybertson, Duane; Buschmann, Frank;
& Sommerlad, Peter. Security Patterns: Integrating Security and Systems Engineering, Wiley
Series in Software Design Patterns, 2006.

• Department of Homeland Security (DHS). Build Security In, Best Practices.
https://buildsecurityin.us-cert.gov/bsi/articles/best-practices.html (2008–2009).

• Berg, Clifford J. High Assurance Design: Architecting Secure and Reliable Enterprise Appli-
cations. Addison-Wesley Professional, 2005.

• Kazman, Rick; Klein, Mark H.; & Clements, Paul C. ATAM: Method for Architecture Eval-
uation (CMU/SEI-2000-TR-004). Software Engineering Institute, Carnegie Mellon Universi-
ty, 2000. http://www.sei.cmu.edu/library/abstracts/reports/00tr004.cfm

• The MITRE Corporation (MITRE). CAPEC: Common Attack Pattern Enumeration and Clas-
sification. http://capec.mitre.org/ (2010).

• National Institute of Standards and Technology (NIST). SAMATE: Software Assurance Me-
trics and Tool Evaluation. http://samate.nist.gov/Main_Page.html (2005).

• CERT. Insider Threat and the Software Development Life Cycle (podcast). Software Engi-
neering Institute, Carnegie Mellon University.
http://www.cert.org/podcast/show/20080304cappelli.html (2008).

• CERT. Integrating Privacy Practices into the Software Development Life Cycle (pod-
cast).Software Engineering Institute, Carnegie Mellon University.
http://www.cert.org/podcast/show/20091222hood.html (2009).

• CoFI. CASL from CoFI. http://www.informatik.uni-bremen.de/cofi/wiki/index.php/CASL

(2008).

• Fitzgerald, John. Welcome to the VDM Portal. http://www.vdmportal.org/twiki/bin/view

(2010).

• Community Z Tools. Overview. http://czt.sourceforge.net/ (2007).

• The ZETA System. Overview. http://uebb.cs.tu-berlin.de/zeta/ (Accessed 2010).

• Jacky, Jonathan. The Way of Z: Practical Programming with Formal Methods. Cam-
bridge University Press, 1996.

• Blanchette, Stephen, Jr.; Crosson, Steven; & Boehm, Barry. Evaluating the Software Design
of a Complex System of Systems (CMU/SEI-2009-TR-023, ESC-TR-2009-023). Software En-

CMU/SEI-2011-TR-013 | 43

gineering Institute, Carnegie Mellon University, 2009.
http://www.sei.cmu.edu/library/abstracts/reports/09tr023.cfm

• Mellado, Daniel; Fernández-Medina, Eduardo; & Piattini, Mario. “A Comparison of Software
Design Security Metrics,” 236–242. Proceedings of the Fourth European Conference on
Software Architecture. Copenhagen, Denmark, Aug. 2010. ACM, 2010.

• Leroy, Xavier. “Computer Security from a Programming Language and Static Analysis Pers-
pective,” 1–9. Proceedings of the 12th European Conference on Programming. Warsaw, Pol-
and, April 2003. Springer-Verlag, 2003.

• Myers, Andrew. PLD’06 Tutorial T1: Enforcing and Expressing Security with Programming
Languages. http://www.cs.cornell.edu/andru/pldi06-tutorial/06jun-pldi-tutorial.pdf (2006).

• Bagheri, Hamid & Mirian-Hosseinabadi, Seyed-Hassan. “Injecting Security as Aspectable
NFR into Software Architecture,” Proceedings of the 14th Asia-Pacific Software Engineering
Conference. Nagoya, Japan. Dec. 2007. IEEE Computer Society Press, 2008.

• Ellison, Robert J.; Goodenough, John B.; Weinstock, Charles B.; & Woody, Carol. Evaluat-
ing and Mitigating Software Supply Chain Security Risks (CMU/SEI-2010-TN-016). Soft-
ware Engineering Institute, Carnegie Mellon University, 2010.
http://www.sei.cmu.edu/library/abstracts/reports/10tn016.cfm

• Bode, Stephan; Fischer, Anja; Kühnhauser, Winfried; & Riebisch, Matthias. “Software Archi-
tectural Design Meets Security Engineering,” Proceedings of the 16th Annual IEEE Interna-
tional Conference and Workshop on the Engineering of Computer Based Systems. San Fran-
cisco, CA, April 2009. IEEE Computer Society Press, 2009.

• Ray, Arnab & Cleaveland, Rance. “A Software Architectural Approach to Security By De-
sign,” Proceedings of the 30th International Computer Software and Applications Conference.
Chicago, Ill, Sept. 2006. IEEE Computer Society Press, 2006.

• Hansson, Jörgen; Wrage, Lutz; Feiller, Peter H.; & Morley, John. “Architectural Modeling to
Verify Security and Nonfunctional Behavior.” IEEE Security & Practice 8, 1: (Jan./Feb.
2010): 43–49.

• Rehman, S. & Mustafa, K. “Research on Software Design Level Security Vulnerabilities.”
ACM SIGSOFT Software Engineering Notes 34, 6 (November 2009): 1–5.

• The Open Group. TOGAF. http://www.opengroup.org/togaf/ (2010).

TOGAF is an industry standard architecture framework that may be used freely by any organ-
ization wishing to develop information systems architecture for use within that organization.
TOGAF has been developed and continuously evolved since the mid-90s by representatives
of some of the world’s leading IT customer and vendor organizations, working in The Open
Group’s Architecture Forum. Details of the Forum and its plans for evolving TOGAF in the
current year are provided on the Architecture Forum website.
http://www.opengroup.org/architecture/.

Note: If your school can afford membership ($1k or $2.5k, depending on the level), you can
find interesting materials in the TOGAF Security Forum.

CMU/SEI-2011-TR-013 | 44

6.6 Assignments

Assignments are discussed and assigned in the week shown and due the following week.

6.7 In-Class Activities

In-class activities and demonstrations are described in the suggested schedule below. A reading
assigned in advance should facilitate instruction and in-class discussions. One of the possible so-
lutions for out-of-classroom work is to assign a semester-long, small-group project that will carry
through the early part of the development life cycle (specification, architecture, design), while
focusing on security and assured development. The biweekly assignments could constitute partial
deliverables to be collected and edited into the final project. Note that depending on the time
available, the number of activities could be increased or decreased.

Other proposed team or individual activities may include

• Evaluate capabilities and limitations of a selected development environment (language, tool).

• Assess and recommend improvements in assurance technology.

• Given an example of software documentation (SRS, SDD), create a traceability matrix.

• Given an example of a project, discuss the applicable constraints considering cost, schedule,
functionality, and quality.

• Given an example of a software specification, carry out a formal requirements inspection.

• Given an example of software design, carry out a formal design inspection.

• For a given software system architecture, perform architectural risk analysis from a security
perspective.

• Specify dependability requirements for a hypothetical system based on background informa-
tion from the AA course.

6.8 Suggested Schedule

The syllabus in Table 5 below defines in-class discussions and other activities that are intended to
reinforce lecture material and homework assignments.

The students are assumed to have access to a software development environment and tools that
allow them to create software projects. Examples of such tools are

• MagicDraw, No Magic Inc. http://www.magicdraw.com/

• IBM Rational Modeler http://www.ibm.com/developerworks/downloads/r/modeler/

• Together Architect, Borland http://www.borland.com/us/products/together/

• Enterprise Architect, Sparx Systems http://www.sparxsystems.com/products/ea/

• Artisan Studio, Artisan Studio Uno, http://www.artisansoftwaretools.com/studiouno

• IBM Rational Rhapsody Developer,
http://www.ibm.com/developerworks/downloads/r/rhapsodydeveloper/

CMU/SEI-2011-TR-013 | 45

• IBM Rational Software Architect V8
http://www.ibm.com/developerworks/downloads/r/architect/

Table 5: Syllabus for the Assured Software Development (ASD2) Course

Week Topic In-Class Activities Suggested Reading Assignment

1 Concepts of
assured
development life
cycle

• Discussion of course objec-
tives, content, and activities
and brief review of basics of
software engineering from the
assurance viewpoint (defini-
tions, practices, process,
standards)

• Class introductions and
assessment of the audience

• [Bishop 2002]
Chapter 18

• [Allen 2008]
Chapters 1, 2

• [Pressman 2009]
Chapter 1

• [Merkow 2010]
Chapter 3

• [Mouratidis 2007]
Chapter 1

• [CERT 2008]

2 Assurance
issues in front-
end development
life cycle
(specification,
architecture,
design)

• Discussion of components of
computer security, threats,
policies and mechanisms, the
role of trust, assurance, opera-
tional issues, and human
issues

• Discussion of threat identifica-
tion and the protection models

• Form project teams and
provide guidance for team
project.

• [Bishop 2002]
Chapter 19

• [Allen 2008]
Chapters 3,4

• [Pressman 2009]
Chapters 3,4

• [Merkow 2010]
Chapter 5

• [DHS 2008-2009a]

• [Mellado 2010]

• [CERT 2009]

3 Software
development
environments
supporting
specification,
architecture, and
high-level design

• Discussion of software devel-
opment environments

• Discussion of security, confi-
dentiality and integrity policies

• Class exercise: Create small
specification based on user
need document.

• [Pressman 2009]
Chapters 7, 8

• [Merkow 2010]
Chapter 5

• [McGraw 2010]

• [Bagheri 2008]

• [Mouratidis 2007]
Chapters 1, 2

Project Part 1: Create
software specification
of an example applica-
tion.

4 Tools support for
assured software
development

• Discussion of tools supporting
assured development and their
applicability to address
misuse/abuse cases

• Demonstration of selected tool
and development environment

• [Pressman 2009]
Chapter 9

• selected readings
from SAMATE and
CAPEC

Project Part 2: Use
example specification
to develop simple
throw-away design
prototype in available
environment.

CMU/SEI-2011-TR-013 | 46

Week Topic In-Class Activities Suggested Reading Assignment

5 Languages
review

• Discussion of properties of
modern languages from securi-
ty perspective

• Identification of potential securi-
ty flaws in Java, C/C++, Ada,
PHP, etc.

• Class exercise: Experiment
with a selected development
environment.

• [Leroy 2003]

• [Myers 2006]

6 Project
constraints
aspects: cost,
schedule,
functionality, and
quality factors

• Discussion of project con-
straints from the security pers-
pective

• Class exercise: Identify simple
application constraints.

• [Allen 2008]
Chapter 7

• [McGraw 2010]

Project Part 3: Analyze
application constraints.

7 Formal
specification
languages and
technologies

• Discussion of formal specifica-
tion and their impact on
assured development

• Class exercise: Create small
formal specification.

• [Bishop 2002]
Chapter 20

• [Pressman 2009]
Chapter 28

• selected readings on
formal tool(s)
[ZETA System 2010]
[Community 2007]
[CoFI 2008]
[Fitzgerald 2010]
[Jacky 1996]

8 Improvements in
technologies to
support
specification,
architecture, and
high-level design

• Discussion of available
technologies

• Class exercise: Validate the
example application design and
complete security report.

• [Schumacher 2006]
Chapters 8-10

• [Mouratidis 2007]
Chapter 12

• [Altran 2010]

• [SWIFT System 2010]

• [McGraw 2010]

Project Part 4: Use
formal specification to
validate requirements
of the example appli-
cation.

9 Architectural
models and
viewpoints

• Discussion of the software
architecture views with a focus
on security and architectural
vulnerability

• Discussion of product lines

• [Pressman 2009]
Chapter 10

• [Schumacher 2006]
Chapters 1, 3-5

• [Ellison 2010a]

• [Mouratidis 2007]
Chapters 5-8

CMU/SEI-2011-TR-013 | 47

Week Topic In-Class Activities Suggested Reading Assignment

10 Architectural risk
and tradeoff
analysis

• Discussion of architectural risk
analysis (attack resistance,
tolerance, and resilience) and
threat modeling

• Class exercise: Perform mock-
up risk analysis of multiple
threats.

• [Allen 2008]
Chapter 6

• [Mouratidis 2007]
Chapter 9

• [Bode 2009]

• [Howard2006]
Chapters 8, 9

• [Merkow 2010]
Chapter 11

• [Kazman 2000]

• [McGraw 2010]

Project Part 5: Use a
tool to model selected
threats and evaluate
choices of architectural
models for the applica-
tion.

11 Methods and
technologies for
developing
assured system
and software
specifications,
architectures,
and high-level
designs

• Discussion of design principles
(least privilege, secure failing)
and technology-specific guide-
lines

• Class exercise: Use tool to
model a simple application.

• [Ray 2006]

• [Hansson 2010]

• [Howard 2006]
Part II

• [Schumacher 2006]
Chapters 12, 13

• [Merkow 2010]
Chapter 7

• [McGraw 2010]

12 Design models
and languages

• Discussion of modeling lan-
guages with a focus on their
features supporting assured
development

• [Rehman 2009] Project Part 6: Use tool
to complete design of
the example applica-
tion.

13 Design validation
and software
inspections

• Discussion of specification and
design inspections

• Class exercise: Carry out a
mock-up design inspection.

• [Pressman 2009]
Chapters 13, 14

• [Blanchette 2009]

• [Schumacher 2006]
Chapter 11

• [McGraw 2010]

14 Final project
report and
presentation

CMU/SEI-2011-TR-013 | 48

CMU/SEI-2011-TR-013 | 49

7 Assured Software Development 3 (ASD3) Course

7.1 Catalog Description

This course covers rigorous methods, techniques, and tools for developing secure code. Such me-
thods include code analysis for commonly known vulnerabilities, source code review using static
analysis tools, and known, language-specific practices for producing secure code.

This course also covers rigorous methods and tools for inspecting, testing, verifying, and validat-
ing software and systems to demonstrate that they meet functional and security requirements. Stu-
dents will learn methods for verification and validation for security assurance and how security
vulnerabilities can differ from programming errors. Team inspections and correctness verification
methods will be covered. Testing techniques will include threat- and attack-based testing, func-
tional testing, risk- and usage-based testing, stress testing, black- and white-box testing, and pene-
tration testing.

7.2 Prerequisites/Corequisites

• Some programming experience, preferably in C or C++, is needed as a prerequisite.

• The ASD1 course can be either a prerequisite or a corequisite. In either case, Weeks 3 and 4
may be replaced by a more extended treatment of other parts of the course.

7.3 Expected Student Outcomes

After completing this course, students will be able to

1. develop software that does not contain known vulnerabilities such as incorrect or incomplete
input validation, poor or missing exception handling, buffer overflows, SQL injection, and

race conditions

2. use methods, techniques, and tools that demonstrate that developed software meets its
functionality and security requirements and implements its security architecture and design

specifications

3. understand how to apply team inspections to validate the functionality and security properties
of software

4. understand methods for correctness verification of critical software components

5. understand how testing for security differs from traditional testing

6. test software to ensure that assurance requirements are met using a variety of methods,

techniques, and tools

7. use threat models, attack patterns, and misuse/abuse cases during software and system testing

8. maintain software to continue to meet its functionality and security requirements

CMU/SEI-2011-TR-013 | 50

7.4 List of Topics

Topics on rigorous methods for system implementation, verification, and testing to develop as-
sured software (Appendix A, Section 6.2) include

• motivation: common vulnerabilities and weaknesses of code

• common pitfalls of string processing: termination of string values, memory management, and
stack smashing

• data representation and pointer issues: unsafe conversions, pointer arithmetic, and code opti-
mization

• vulnerabilities in modern languages, such as Java, C#, and PHP

• recommended coding practices

• code inspections and other code-reading techniques

• pre- and post-conditions for specifying the behavior of code units and proofs of correctness to
show that code meets its specified requirements

• unit, integration, system, and regression testing, including assurance needs and techniques

• other static analysis methods and tools: detecting memory leaks, and buffer overflow vulne-
rabilities

• other dynamic analysis methods and tools: fuzzers, penetration testing, and other attack-based
methods

Topics on assurance aspects of software maintenance and evolution (Appendix A, Section 6.2)
include

• methods for restructuring code to improve understandability

• regression testing

• use of configuration management systems and processes

7.5 Sources

7.5.1 Primary

• Merkow, Mark S. & Raghavan, Lakshmikanth. Secure and Resilient Software Development.
CRC Press, 2010.

Abstract from publisher

Although many software books highlight open problems in secure software development, few
provide easily actionable, ground-level solutions. Breaking the mold, Secure and Resilient
Software Development teaches you how to apply best practices and standards for consistent
and secure software development. It details specific quality software development strategies
and practices that stress resilience requirements with precise, actionable, and ground-level in-
puts.

CMU/SEI-2011-TR-013 | 51

Providing comprehensive coverage, the book illustrates all phases of the secure software de-
velopment life cycle. It shows developers how to master non-functional requirements, includ-
ing reliability, security, and resilience. The authors provide expert-level guidance through all
phases of the process and supply many best practices, principles, testing practices, and design
methodologies.

• Seacord, Robert C. Secure Coding in C and C++. Addison-Wesley, 2005.
http://www.sei.cmu.edu/library/abstracts/books/0321335724.cfm

Abstract from publisher

Commonly exploited software vulnerabilities are usually caused by avoidable software de-
fects. Having analyzed nearly 18,000 vulnerability reports over the past ten years, the
CERT/Coordination Center (CERT/CC) has determined that a relatively small number of root
causes account for most of them. This book identifies and explains these causes and shows
the steps that can be taken to prevent exploitation. Moreover, this book encourages program-
mers to adopt security best practices and develop a s security mindset that can help protect
software from tomorrow's attacks, not just today’s.

Drawing on the CERT/CC’s reports and conclusions, Robert Seacord systematically identifies
the program errors most likely to lead to security breaches, shows how they can be exploited,
reviews the potential consequences, and present secure alternatives.

Coverage includes technical detail on how to

− Improve the overall security of any C/C++ application

− Thwart buffer overflows and stack-smashing attacks that exploit insecure string manipu-
lation logic

− Avoid vulnerabilities and security flaws resulting from the incorrect use of dynamic
memory management functions

− Eliminate integer-related problems: integer overflows, sing errors, and truncation errors

− Correctly use formatted output functions without introducing format-string vulnerabili-
ties

− Avoid I/O vulnerabilities, including race conditions

Secure Coding in C and C++ presents hundreds of examples of secure code, insecure code,
and exploits, implemented for Windows and Linux. If you’re responsible for creating secure
C or C++ software—or for keeping it safe—no other book offers you this much detailed, ex-
pert assistance.

7.5.2 Secondary

• The MITRE Corporation (MITRE). Common Weakness Enumeration. http://cwe.mitre.org/
(2010).

• Grembi, Jason. “Secure Software Development - A Security Programmer’s Guide.” Tutorial
at 11th Semi-Annual Software Assurance Forum. Arlington, VA, November 2009. Software
Engineering Institute, Carnegie Mellon University, 2009.
https://www.vte.cert.org/vteweb/go/2699.aspx

CMU/SEI-2011-TR-013 | 52

• Gerhart, Susan; Hogle, Jan; & Crandall, Jedidiah. How Do Buffer Overflow Attacks Work?
http://nsfsecurity.pr.erau.edu/bom/ (2002).

This document provides a nice introduction to buffer overflows and stack-smashing using
animation and student exercises.

• CERT. CERT Secure Coding Standards. https://www.securecoding.cert.org/ (2010).

This document includes advice for Java, as well as C and C++.

• Miller, Barton P.; Cooksey, Gregory; & Moore, Fredrick. “An Empirical Study of the Ro-
bustness of MacOS Applications Using Random Testing.” ACM SIGOPS Operating Systems
Review 41, 1 (January 2007): 78-86.

This document describes the results of fuzz testing many common applications, including a
review of earlier testing of Unix and Windows systems.

• Golze, Andreas; Sarbiewski, Mark; & Zahm, Alain. Optimize Quality for Business Out-
comes: A Practical Approach to Software Testing. Wiley Publishing, 2008.

Chapter 8 on Security Testing is especially useful.

• Howard, Michael & LeBlanc, David. Writing Secure Code, 2nd ed. Microsoft Press, 2003.

• Howard, Michael; LeBlanc, David; & Viega, John. 19 Deadly Sins of Software Security.
McGraw-Hill, 2005.

7.6 Assignments

Students should complete individual assignments as described in the suggested schedule below.
They should also work on a team project that includes implementing a simple system, inspecting
it, performing static analysis, and finally testing the system. Assignments are discussed and as-
signed in the week shown and due the following week.

7.7 In-Class Activities

The buffer overflow demos and exercises provided at http://nsfsecurity.pr.erau.edu/bom are par-
ticularly helpful. In addition, it is very useful to conduct a demonstration code inspection with the
whole class acting as reviewers. This gives the instructor the opportunity to demonstrate and de-
scribe expected behavior before and during the inspection. Many of the homework assignments
may also be conducted as in-class activities. All in-class activities and demonstrations are de-
scribed in the suggested schedule below. Note that depending on the time available, the number of
activities could be increased or decreased.

7.8 Suggested Schedule

The syllabus in Table 6 below defines in-class discussions and other activities that are intended to
reinforce lecture material and homework assignments.

CMU/SEI-2011-TR-013 | 53

Table 6: Syllabus for the Assured Software Development (ASD3) Course

Week Topic In-Class Activities Suggested Readings Assignment

1 Introduction:

• Overview of vulnerabil-
ities and their costs

• Properties of secure
and resilient software

 [Merkow 2010]
Chapters 1, 2

• Write a simple program to
be checked for
vulnerabilities later.

• Project: Elicit simple
requirements.

2 Vulnerabilities:

• CWE/SANS Top 25
Most Dangerous
Programming Errors

• Security Concepts

 • [Merkow 2010]
Appendix A

• [Seacord 2005]
Chapter 1

• Read “Seven Pernicious
Kingdoms” paper and
categorize several
attacks according to this
taxonomy.

• Project: Review
requirements.

3 General Strategies:

• Security and resilience
throughout the life
cycle

• Attack surfaces and
security perimeters

• OWASP Best
Practices

 [Merkow 2010]
Chapters 3, 4

• Categorize risks by
methods that can detect
them and/or prevent
them.

• Project: Design solution.

4 Development Practices:

• Best practices for
Requirements,
Architecture and
Design (e.g., abuse/
misuse cases, threat
modeling, risk analy-
sis, design reviews,
defense in depth)

 • [Merkow 2010]
Chapter 5

• [Seacord 2005]
Chapter 8

• Create abuse/misuse
cases from requirements.

• Describe risk mitigation
strategies for threat
models.

• Describe recommended
software development
practices to create and
maintain trustworthy
code.

• Project: Review design.

5 Programming Practices:

• OWASP Top 10
Security Risks

• OWASP Enterprise
Security API

• Cross-site scripting

• Injection attacks

• Authentication and
session management

 [Merkow 2010]
Chapter 6

• Describe prevention
methods for OWASP top
10.

• Repair flawed code:
authentication.

• Project: Update design.

CMU/SEI-2011-TR-013 | 54

Week Topic In-Class Activities Suggested Readings Assignment

6 Memory Management in
C and C++:

• Common memory
management errors
(buffer overflow, stack
smashing)

• Input validation

View demos and
perform exercises
from
http://nsfsecurity.pr.e
rau.edu/bom/.

[Seacord 2005]
Chapters 2, 4

Review and repair flawed
code for buffer overflow, input
validation and memory
management flaws.

7 Strings, Pointers and
Integers:

• Common string
manipulation errors

• Integer overflow
vulnerabilities

• Pointer subterfuge

 [Seacord 2005]
Chapters 3, 5

Review and repair flawed
code for integer overflows
and string processing
insecurities.

8 Other vulnerabilities in C
and C++:

• Formatted I/O
operations

• File I/O race
conditions (e.g., Time
Of Use Time Of
Check)

• Other file system
exploits

 [Seacord 2005]
Chapters 6, 7

• Review and repair flawed
code for race condition
insecurities (file I/O).

• Project: Implementation
due

9 Inspections, proofs and
code reading:

• Code-reading
techniques

• Formal code
inspections

• Program verification

Conduct
demonstration code
inspection.

 • Review flawed code and
identify vulnerabilities.

• Carry out proof of
correctness of a small
program.

• Review a flawed
modification of a
program.

• Project: Code inspection

10 Static Analysis:

• Types of static
analysis

• Modern analysis tools
(e.g., Coverity, Fortify)

 [Merkow 2010]
Chapter 8

• Describe vulnerabilities
that can be detected by
static analysis (SA) and
those that cannot.

• For those vulnerabilities
that cannot be detected
by SA, describe
mitigation strategies.

• Project: Perform static
analysis on code using a
tool such as Fortify or
Veracode.

CMU/SEI-2011-TR-013 | 55

Week Topic In-Class Activities Suggested Readings Assignment

11 Testing:

• Best practices for unit
testing

• Penetration testing
• Fuzzing
• Overview of Common

Criteria

 [Merkow 2010]
Chapter 9

• Describe penetration
tests for a given system.

• Create tests to
demonstrate compliance
with assurance
requirements.

• Perform fuzz testing of an
example program.

• Project: Review static
analysis report.

12 Insecurities in Java and
other languages:

• Runtime environment
• Coding practices
• Overview of known

vulnerabilities

 [CERT 2011] • Review and repair flawed
Java program.

• Project: Create test plan.

13 Trends and Resources:

• Comprehensive,
Lightweight
Application Security
Process (CLASP)

• Certificates and
courses in security
and software
assurance

 [Merkow 2010]
Chapters 10, 12

• Case study: Recommend
process improvements
using CLASP.

• Create a website with
links to resources useful
in educating colleagues
and in staying abreast of
developments in software
assurance.

• Project: Conduct testing.

14 Final Exam

CMU/SEI-2011-TR-013 | 56

CMU/SEI-2011-TR-013 | 57

8 Assurance Assessment (AA) Course

8.1 Catalog Description

This course covers the fundamentals of establishing a required level of software and system as-
surance and applying methods and determining measures to assess whether the required level of
assurance has been achieved. Topics include assessment methods; defining product and process
measures and other performance indicators; measurement processes and frameworks; perfor-
mance indicators for business survivability and continuity; and comparing selected measures to
determine whether the software/system meets its required level of assurance. These fundamentals
are applied to newly developed software and systems, as well as during the acquisition of soft-
ware and services.

8.2 Prerequisites

• the ability to develop a software module (design, code, test) using a contemporary program-
ming language

• knowledge of the fundamentals of computer organization, operating systems, networks, and
digital communications

• knowledge of general software engineering concepts and practices: the software life cycle,
requirements engineering, software design, software construction, software verification and
validation, and software development processes

• awareness of software security issues (e.g., properties, threats, and requirements)

8.3 Expected Student Outcomes

After completing this course, students will be able to

• specify a required level of assurance for a software product or system

• understand how to use a range of assessment methods including requirements validation, risk
analysis, threat analysis, vulnerability assessment, and assurance cases

• define and develop key product and process measures and other performance indicators that
can be used to validate a required level of assurance

• collect and report measures that indicate the extent to which software and systems have
achieved their required level of assurance

• perform assurance assessment for newly developed software and systems

• perform assurance assessment for acquired systems and services, including developing ser-
vice level agreements and monitoring performance against them

CMU/SEI-2011-TR-013 | 58

8.4 List of Topics

Topics on software assurance concepts, assurance assessment methods and processes, and mea-
surement fundamentals (Appendix A, Sections 3.1, 3.2, 3.3) include

• introduction to software assurance

• software security fundamentals

• software assurance throughout the software development life cycle (SDLC)

• software assurance methods

• software measurement fundamentals

• product and process assurance measures

• software measurement processes and frameworks

Topics on software assurance assessment for existing software and for acquired software (Appen-
dix A, Section 6.4) include

• software assurance assessment during system operation and maintenance

• software assurance assessment for acquired systems and software services

8.5 Sources

8.5.1 Primary

• Bishop, Matt. Computer Security: Art and Science. Addison-Wesley Professional, 2002.

Abstract from publisher

The importance of computer security has increased dramatically during the past few years.
Bishop provides a monumental reference for the theory and practice of computer security.
This is a textbook intended for use at the advanced undergraduate and introductory graduate
levels, non-University training courses, as well as reference and self-study for security profes-
sionals. Comprehensive in scope, this covers applied and practical elements, theory, and the
reasons for the design of applications and security techniques. Bishop treats the management
and engineering issues of computer. Excellent examples of ideas and mechanisms show how
disparate techniques and principles are combined (or not) in widely-used systems. Features a
distillation of a vast number of conference papers, dissertations and books that have appeared
over the years, providing a valuable synthesis. This book is acclaimed for its scope, clear and
lucid writing, and its combination of formal and theoretical aspects with real systems, tech-
nologies, techniques, and policies.

• Kan, Stephen H. Metrics and Models in Software Quality Engineering, 2nd ed. Addison-
Wesley, 2002.

Abstract from publisher

Our society has become increasingly reliant on software in the past decade; businesses have
learned that measuring the effectiveness of software projects can impact the bottom line; and

CMU/SEI-2011-TR-013 | 59

quality is no longer an advantage in the software marketplace (it is a necessity). For these rea-
sons, the demand for quality in software engineering has taken center stage in the twenty-first
century. In this new edition, Stephen Kan presents a thoroughly updated overview and im-
plementation guide for software engineers faced with the challenge of ensuring quality. The
book balances theory, techniques, and real-life examples to provide practical guidelines in the
practice of quality. Although there are equations and formulas presented, the book's focus re-
mains on helping the reader understand and apply the metrics and models. With this book as a
map, readers can navigate through the complex field of quality, and benefit their organization
by improving their processes and products.

8.5.2 Secondary

• Alberts, Christopher; Allen, Julia; & Stoddard, Robert. Integrated Measurement and Analysis
Framework for Software Security (CMU/SEI-2010-TN-025). Software Engineering Institute,
Carnegie Mellon University, 2010.

• IEEE Standards Association (IEEE-SA). IEEE Std 1061–1998 IEEE Standard for a Software
Quality Metrics Methodology. IEEE–SA, 1998.

• IEEE Standards Association (IEEE–SA) IEEE Std 1219-1998 IEEE Standard for Software
Maintenance. IEEE–SA, 1998.

• IEEE Standards Association (IEEE–SA). IEEE Std 1062–1998 IEEE Recommended Practice
for Software Acquisition. IEEE–SA, 1998.

• IEEE Standards Association (IEEE–SA). IEEE Std 15939–2007 IEEE Systems and Software
Engineering—Measurement Process. IEEE–SA, 2007.

• Gold, Nicolas; Mohan, Andrew; Knight, Claire; & Munro, Malcolm. “Understanding Service-
Oriented Software,” IEEE Software 21, 2 (March/April 2004): 71–77.

8.6 Assignments

Students are assigned reading each week in which new material is discussed. Assignments are
discussed and assigned in the week shown and due the following week. For some weeks, individ-
ual software assurance assessment exercises are assigned, some based on in-class exercises. A
major part of the course is a software assurance assessment team project.

• Teams will select an application that is under development and develop a measurement and
analysis (MA) plan [Alberts 2010]. The teams will carry out the following activities: specify
the objectives for measurement and analysis; specify the measures, analysis techniques, and
mechanisms for data collection, data storage, data reporting, and feedback; determine how da-
ta will be collected, stored, analyzed, and reported; and decide how results can be used in
making informed decisions and how to take appropriate corrective actions.

• The instructor will provide the teams with candidate applications. Bishop’s book [Bishop
2002] has some examples in Part 8.

CMU/SEI-2011-TR-013 | 60

8.7 In-Class Activities

In-class activities are detailed in the suggested schedule below. Most sessions consist of lecture
and related discussion of various assurance assessment topics. Most sessions also include a group
exercise. The exercise should take 15 to 30 minutes and be followed by a 15-to-20-minute class
discussion. Note that depending on the time available, the number of activities could be increased
or decreased.

8.8 Suggested Schedule

The syllabus in Table 7 below defines in-class discussions and other activities that are intended to
reinforce lecture material and homework assignments.

Table 7: Syllabus for the Assurance Assessment (AA) Course

Week Topic In-Class Activities Suggested Reading Assignment

1 Introduction to
Software Assurance

• Discussion of course objec-
tives, content, and activities
(including team project)

• Discussion of software engi-
neering: practices,
processes, tools, and stan-
dards

• Discussion of software
assurance: definition, impor-
tance, current state

• Group exercise based on
one of the exercises in Chap-
ter 17 of [Bishop 2003]

• [Bishop 2002]
Chapter 18

• [Kan 2002]
Chapters 1, 2

2 Software Security
Fundamentals

• Discussion of components of
computer security, threats,
policies and mechanisms,
the role of trust, assurance,
operational issues, and
human issues

• Discussion of access control
matrix model and the protec-
tion model

• Group exercise based on
exercise 1 in Chapter 1 of
[Bishop 2003]

[Bishop 2002]
Chapters 1, 2, 3

Individual exercise
based on exercise 2 in
Chapter 1 of
[Bishop 2003]

CMU/SEI-2011-TR-013 | 61

Week Topic In-Class Activities Suggested Reading Assignment

3 Assurance through
the SDLC

• Discussion of the establish-
ment and specification,
throughout the SDLC, of the
required or desired level of
assurance for a specific
software application, set of
applications, or software-
reliant system (and tolerance
for same)

• Discussion of security,
confidentiality, and integrity
polices

• Group exercise based on
exercise 1 or 2 in Chapter 3
of [Bishop 2003]

[Bishop 2002]
Chapters 4, 5, 6

Complete and
submit team project
member information
sheet.

4 Assurance
Methods 1

• Discussion of assurance in
requirements analysis and
definition

• Discussion of assurance in
system and software design

• Form project teams and pro-
vide guidance for team
project proposal.

• Group exercise based on
exercise 5a in Chapter 19 of
[Bishop 2003]

[Bishop 2002]
Sections 19.1, 19.2 • Individual exercise

based on exercise
5b in Chapter 19 of
[Bishop 2003]

• Team project work

5 Assurance
Methods 2

• Discussion of assurance in
implementation and integra-
tion

• Discussion of assurance in
operation and maintenance

• Discussion of assurance of
formal verification techniques

• Group exercise based on a
code review of a simple
method [Bishop 2003]

[Bishop 2002]
Sections 19.3, 19.4,
20.1, 20.2

• An exercise involving
development of a set
of test cases for the
function specified in
exercise 5a or 5b in
Chapter 19 of
[Bishop 2003]

• Complete and submit
team project propos-
al: team organiza-
tion, problem need
statement, project
schedule and delive-
rables.

CMU/SEI-2011-TR-013 | 62

Week Topic In-Class Activities Suggested Reading Assignment

6 Assurance
Methods 3

• Discussion of how various
methods (such as validation
of security requirements, risk
analysis, threat analysis, vul-
nerability assessments and
scans, and assurance evi-
dence) can be used to as-
sess the software assurance
of a developing or existing
system

• Group exercise based on
exercise 1 in Chapter 29 of
[Bishop 2003]

[Bishop 2002]
Chapter 29 • Exercise 2 in

Chapter 29 of
[Bishop 2003]

• Team project work

7 Measurement
Fundamentals

• Discussion of software quali-
ty, uses of measurement,
basic measures, level of
measurement, derived
metrics, reliability and validity
measures, measurement
errors, correlation, causality,
and software quality and
measurement standards

• Group exercise asking what
practices should be part of
the software process to en-
sure collection of one or
more of the metrics listed in
Table 1 in [Alberts 2010]

• [Kan 2002]
Chapters 1, 3

• [Alberts 2010]
Chapters 1, 2

Team project work

8 Product and
Process Assurance
Measures

• Discussion of the definition
and development of key
product and process mea-
surements (and additional
performance indicators) that
can be used to validate the
required level of software
assurance appropriate to a
given life-cycle phase

• Discussion of the Goal-
Question-Metric (GQM)
techniques for determining
metrics

• Group exercise involving
determining a software secu-
rity metric using GQM

[Kan 2002]
Chapters 4, 10, 15

Interim team project
progress report

CMU/SEI-2011-TR-013 | 63

Week Topic In-Class Activities Suggested Reading Assignment

9 Measurement
Processes and
Frameworks 1

• Discussion of measurement
processes and frameworks
and their use in process/
practice assessment and in
software assurance integra-
tion into the software devel-
opment life cycle (SDLC)

• Group exercise involving the
development of a modest
measurement process for the
product development
discussed in exercise 3 in
Chapter 18 of [Bishop 2003]

• [Kan 2002]
Chapters 5, 9

• [IEEE 1998a]

Team project work

10 Measurement
Processes and
Frameworks 2

• Discussion of establishing
and sustaining a measure-
ment program and process,
planning for measurement,
performing measurement,
and evaluating the mea-
surement process

• Group exercise involving
how a small to medium soft-
ware producer should start
up a metrics program. (This
is to be done at a high con-
ceptual level, simply indicat-
ing the types of activities that
should be carried out.)

• [ISO 2007]

• [Alberts 2010]
Chapter 2

• [Kan 2002]
Chapter 19

• On the basis of class
discussion, complete
the in-class exercise,
providing detail
about which meas-
ures would be made,
and how they would
be collected and
used.

• Team project work

11 Assurance
Assessment during
System Operation
and Maintenance

• Discussion of assurance
assessment methods and
measures during the opera-
tional and maintenance
phases of the SDLC

• Group exercise involving
how a small to medium com-
pany should assess the
operation and maintenance
of a software product
produced in-house. (This is
to be done at a high concep-
tual level, simply indicating
the types of activities that
should be carried out).

• [Kan 2002]
Chapters 13, 14

• [IEEE 1998b]

• [CMMI 2009]
pp183-201

• On the basis of class
discussion, complete
the in-class exercise,
providing detail
about which meas-
ures would be made,
and how they would
be collected and
used.

• Team project work

CMU/SEI-2011-TR-013 | 64

Week Topic In-Class Activities Suggested Reading Assignment

12 Assurance
Assessment for
Acquired Systems
and Software
Services

• Discussion of assurance of
software acquired through
supply chains, vendors, and
open sources, including de-
veloping requirements and
assuring delivered functional-
ity and security

• Discussion of development
of service level agreements
for functionality and security
with service providers and for
monitoring compliance

• [Alberts 2010]
Chapters 4, 5, 6

• [IEEE 1998c]

• [Gold 2004]

• [CMMI 2007]
pp183-201

Team project work

13 Project
Presentations

• Student teams make a 20-
minute presentation about
the results of their projects.

 Final project report

14 Final Exam

CMU/SEI-2011-TR-013 | 65

9 System Security Assurance (SSA) Course

9.1 Catalog Description

This course covers how to incorporate effective security technologies and methods into new and
existing systems. Students will learn how to think like an attacker when planning a variety of at-
tacks, including password cracking, escalation of privileges, denial of service, viruses, worms,
Trojans, spyware, logic bombs, and other malicious code. They will learn the most effective me-
thods for preventing or defeating these attacks and analyzing the threats that they pose. Students
will understand their ethical responsibilities and obligations when developing, acquiring, and op-
erating software and systems.

9.2 Prerequisites

• completion of the AA course

• basic programming skills in a commonly used, high-level language (e.g., C/C++, Java)

9.3 Expected Student Outcomes

After completing this course, students will be able to

1. describe the kinds of safety and security risks associated with critical infrastructure systems
such as power, telecommunications, water, and air-traffic-control systems

2. understand the variety of methods attackers can use to damage software and its associated
data via weaknesses in the system’s design or code

3. analyze threats to software

4. describe and deploy appropriate countermeasures, such as layers, access controls, privileges,

intrusion detection, encryption, and coding checklists

5. analyze threats to operational environments

6. design and plan for effective countermeasures such as access control, authentication, intrusion
detection, encryption, and coding checklists

7. understand how physical security countermeasures, such as gates, locks, guards, and

background checks, can address risks

8. understand how people who are knowledgeable about attack and prevention methods are
obligated to use their abilities, for both legal and ethical reasons

9. understand the legal and ethical considerations involved in analyzing a variety of historical
events and investigations

CMU/SEI-2011-TR-013 | 66

9.4 List of Topics

Topics on incorporating security technologies and methods into new and existing systems (Ap-
pendix A, Sections 5.1, 5.2, 5.3) include

• introduction to system security assurance

• attacker methods

• threat analysis

• security countermeasures

• planning for access control and authentication

• safety and security risks

• mitigating security risks

• legal and ethical issues

9.5 Sources

9.5.1 Primary

• Anderson, Ross J. Security Engineering: A Guide to Building Dependable Distributed Sys-
tems, 2nd ed. Wiley, 2008.

Abstract from publisher

The world has changed radically since the first edition was published in 2001. Spammers, vi-
rus writers, phishermen, money launderers, and spies now trade busily with each other in a
lively online criminal economy—and as they specialize, they get better. New applications,
from search to social networks to electronic voting machines, provide new targets. And ter-
rorism has changed the world. In this indispensable, fully updated guide, Ross Anderson re-
veals how to build systems that stay dependable whether faced with error or malice.

Here’s straight talk about

− Technical engineering basics—cryptography, protocols, access controls, and distributed
systems

− Types of attack—phishing, Web exploits, card fraud, hardware hacks, and electronic
warfare

− Specialized protection mechanism—what biometrics, seals, smartcards, alarms, and
DRM do, and how they fail

− Security economics—why companies build insecure systems, why it’s tough to manage
security projects, and how to cope

− Security psychology—the privacy dilemma, what makes security too hard to use, and
why deception will keep increasing

− Policy—why governments waste money on security, why societies are vulnerable to ter-
rorism, and what to do about it

CMU/SEI-2011-TR-013 | 67

• Bishop, Matt. Computer Security: Art and Science. Addison-Wesley Professional, 2002. Ab-
stract from publisher

The importance of computer security has increased dramatically during the past few years.
Bishop provides a monumental reference for the theory and practice of computer security.
This is a textbook intended for use at the advanced undergraduate and introductory graduate
levels, non-University training courses, as well as reference and self-study for security profes-
sionals. Comprehensive in scope, this covers applied and practical elements, theory, and the
reasons for the design of applications and security techniques. Bishop treats the management
and engineering issues of computer. Excellent examples of ideas and mechanisms show how
disparate techniques and principles are combined (or not) in widely-used systems. Features a
distillation of a vast number of conference papers, dissertations and books that have appeared
over the years, providing a valuable synthesis. This book is acclaimed for its scope, clear and
lucid writing, and its combination of formal and theoretical aspects with real systems, tech-
nologies, techniques, and policies.

9.5.2 Secondary

Note: In addition to the following sources, the instructor should consider using papers that cover
recent trends in software security.

• The Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS).
Software Engineering Code of Ethics and Professional Practice (Version 5.2). ACM/IEEE-
CS joint task force on Software Engineering Ethics and Professional Practices (SEEPP).
http://www.acm.org/about/se-code (1999).

• Dark, Melissa; Harter, Nathan; Morales, Linda; & Garcia, Mario A. “An Information Security
Ethics Education Model.” Journal of Computing Sciences in College 23, 6 (June 2008): 82-
88.

• Dowd, Mark; McDonald, John; & Schuh, Justin. The Art of Software Security Assessment:
Identifying and Preventing Software Vulnerabilities. Addison Wesley, 2007.

• Pollice, Gary. Ethics and Software Development.
http://www.ibm.com/developerworks/rational/library/may06/pollice/index.html (2006).

• Goertzel, Karen Mercedes; Winograd, Theodore; McKinley, Holly Lynne; Oh, Lyndon; Co-
lon, Michael; McGibbon, Thomas; Fedchak, Elaine; & Viennuea. Software Security Assur-
ance: State-of-the-Art Report (SOAR). Information Assurance Technology Analysis Center
(IATAC) & Data and Analysis Center for Software (DACS), 2007.
http://iac.dtic.mil/iatac/download/security.pdf

9.6 Assignments

Students are assigned reading for each class period where new material is discussed. Assignments
are discussed and assigned in the week shown and due the following week. For some weeks, indi-
vidual system security assurance exercises are assigned, some based on in-class exercises. A ma-
jor part of the course is a software system security assurance team project.

CMU/SEI-2011-TR-013 | 68

• Teams will select an existing application and analyze and judge its system security features:
what are the threats to the system; what sort of attacks is the system subject to; what sort of
countermeasures are there (or should there be) to mitigate system security risks? The teams
will carry out the following activities: organize and plan their work; determine a process for
carrying out their work; study and analyze the application; identify the key security issues in
the application; decide on appropriate measures to address problems; and report their findings
and recommendations.

• The instructor will provide the teams with candidate applications. Ross’s book [Ross 2008]
discusses a number of application types and examples.

9.7 In-Class Activities

In-class activities are described in the suggested schedule below. Most sessions consist of lecture
and related discussion of various assurance assessment topics and also include a group exercise.
The exercise should take 15 to 30 minutes and be followed by a 15-to-20-minute class discussion.
Note that depending on the time available, the number of activities could be increased or de-
creased.

9.8 Suggested Schedule

The syllabus in Table 8 below defines in-class discussions and other activities that are intended to
reinforce lecture material and homework assignments.

Table 8: Syllabus for the System Security Assurance (SSA) Course

Week Topic In-Class Activities Suggested Reading Assignment

1 Introduction
to System
Security
Assurance

• Discussion of course objectives, con-
tent, and activities (including team
project)

• Presentation of an overview of security
engineering issues

• Discussion of security issues for vari-
ous examples: a bank, an air force
base, a hospital, and the home

• Group exercise to identify security
risks in a school system. (This is to be
done at a high conceptual level, simply
indicating the types of risks that exist.)

• [Anderson 2008]
Chapter 1

• [Bishop 2002]
Chapter 1

CMU/SEI-2011-TR-013 | 69

Week Topic In-Class Activities Suggested Reading Assignment

2 Attacker
Methods 1

• Discussion of methods attackers can
use to damage software and its asso-
ciated data via weaknesses in the
design or coding of the system.
Discussion of attack patterns and
attack trees

• Group exercise based on exercise 1 in
Chapter 13 of [Bishop 2003]

• [Anderson 2008]
Chapters 2

• [Bishop 2002]
Chapter 13,
Sections 19.2,
19.3

• Individual exercise:
On the basis of
class discussion,
complete the in-
class exercise, pro-
viding detail about
how one of the risks
identified could be
mitigated.

• Complete and sub-
mit team project
member information
sheet.

3 Attacker
Methods 2

• Discussion of attacks used to interfere
with an application’s or system’s oper-
ations

• Group exercise based on exercise 2a
in Chapter 22 of [Bishop 2003]

• [Anderson 2008]
Chapters 11, 18

• [Bishop 2002]
Chapters 22, 23

Individual exercise
based on exercise 2 in
Chapter 13 of [Bishop
2003]

4 Threat
Analysis 1

• Discussion of analysis and modeling
of the threats to which newly devel-
oped or acquired software is most like-
ly to be vulnerable in specific operat-
ing environments and domains

• Form project teams and provide guid-
ance for team project proposal.

• [Anderson 2008]
Chapters 19, 20,
21

• [Bishop 2002]
Chapter 23

Individual exercise
based on exercises 2b
and 2c in Chapter 22
of [Bishop 2003]

5 Threat
Analysis 2

• Discussion of analysis and modeling
of the threats to which existing soft-
ware is most likely to be vulnerable in
specific operating environments and
domains

• Group exercise based on exercise 5 in
Chapter 23 of [Bishop 2003]

• [Anderson 2008]
Chapters 4, 11

• [Bishop 2002]
Chapter 23

Team project work

6 Security
Counter-
measures 1

• Discussion of countermeasures such
as layers, access controls, privileges,
intrusion detection, encryption, and
coding checklists

• Group exercise based on exercise 1 in
Chapter 9 of [Bishop 2003]

• [Anderson 2008]
Chapters 4, 5

• [Bishop 2002]
Chapters 2, 9

Complete and submit
team project proposal:
team organization,
problem need
statement, project
schedule and
deliverables.

7 Security
Counter-
measures 2

• Discussion of countermeasures such
as layers, access controls, privileges,
intrusion detection, encryption, and
coding checklists

• Group exercise based on exercise 1 in
Chapter 25 of [Bishop 2003]

• [Anderson 2008]
Chapters 6, 8

• [Bishop 2002]
Chapters 10, 25

• Individual exercise
based on exercise 2
in Chapter 9 of
[Bishop 2003]

• Team project work

CMU/SEI-2011-TR-013 | 70

Week Topic In-Class Activities Suggested Reading Assignment

8 Planning for
Access
Control and
Authentica-
tion

• Discussion of designing and planning
for access control and authentication

• Group exercise based on exercise 13
in Chapter 12 of [Bishop 2003]

• [Anderson 2008]
Chapter 4

• [Bishop 2002]
Chapters 12, 15

• Individual exercise
based on exercise 2
in Chapter 25 of
[Bishop 2003]

• Team project work

9 Safety and
Security
Risks

• Discussion of safety and security risks
associated with critical infrastructure
systems such as power, telecommuni-
cations, water, and air-traffic-control
systems

• Group exercise to identify security
risks in a nuclear power plant system.
(This is to be done at a high concep-
tual level, simply indicating the types
of risks that exist.)

[Anderson 2008]
Chapters 13, 19, 20,
24

Interim team project
progress report

10 Mitigating
Security
Risks

• Mitigating risks with gates, locks,
guards, and background checks

• Group exercise based on exercise 6 in
Chapter 15 of [Bishop 2003]

• [Anderson 2008]
Chapters 4, 5

• [Bishop 2002]
Chapter 15

• On the basis of
class discussion in
the previous class,
complete the in-
class exercise,
providing detail
about how one of
the risks identified
could be mitigated.

• Team project work

11 Legal and
Ethical
Issues 1

• Obligations that people, who are
knowledgeable about attack and
prevention methods, have to use their
abilities, for both legal and ethical
reasons

• Group exercise concerning Privacy
and Surveillance: The Carnivore case
(http://computingcases.org/
case_materials/case_materials.html)

• [ACM 1999]

• [Pollice 2006]

Team project work

12 Legal and
Ethical
Issues 2

• The legal and ethical considerations
involved in analyzing historical events
and investigations

• Class discussion: How does [ACM
1999] relate to software security
engineering?

• [ACM 1999]

• [Anderson 2008]
Chapters 7, 19,
22, 23

Team project work

13 Project
Presenta-
tions

Student teams make a 20-minute presen-
tation about the results of their projects.

 Final project
report

14 Final Exam

CMU/SEI-2011-TR-013 | 71

10 Software Assurance Capstone Experience (SACE)

10.1 Catalog Description

This course focuses on the development or modification of a significant software system, employ-
ing software assurance knowledge gained from courses throughout the program. The course in-
cludes development or modification of requirements, design, implementation, and testing of the
system. Deliverables include a project plan requirements specifications; preliminary and detailed
designs; code; and test, verification, and validation results. The course culminates with a presenta-
tion of the software product to the customer, including a demonstration of its functional and secu-
rity features.

10.2 Prerequisites

• SOpA course

• ASD1 course

• ASD2 course

• ASD3 course

• AA course

• SSA course

10.3 Corequisites

• AM course

• ASA course

10.4 Expected Student Outcomes

After completing this course, students will be able to

• establish and specify the required/desired level of assurance for a specific software system

• evaluate the capabilities and limitations of technical environments, languages, and tools for
assured software

• identify, analyze, and perform software assurance practices that are relevant for the software
to be developed

• demonstrate compliance with laws, regulations, standards, and policies that apply to the soft-
ware product

• analyze the threats to which the software is most likely to be vulnerable in a specific operat-
ing environment and domain, including a risk assessment of security vulnerabilities

• develop requirements specification, architecture, and design specifications that satisfy the
required/desired level of assurance for a specific software system

CMU/SEI-2011-TR-013 | 72

• apply methods, techniques, and tools to construct software modules that meet the functionali-
ty and security requirements and implement the modules’ security architecture and design
specifications

• apply testing and review methods, develop plans, and analyze results that demonstrate that a
software product satisfies its functionality and security requirements

• plan for and ensure that the software responds effectively to operational software accidents,
failures, and intrusions

10.5 List of Topics

Because of the nature of this course, the course topics include a broad spectrum from the
MSwA2010 BoK (Appendix A):

• overview of system security engineering

• project team process, organization, communication, and assessment

• project management (planning, risk management, configuration management) and software
assurance plans

• quality assurance, software assurance metrics, and software assurance analytics

• requirements, design, and implementation

• testing, inspections, and reviews, including independent assurance testing

• creation and maintenance of auditable evidence for software assurance

• evolution and operation issues

• project reports and presentations

10.6 Sources

No specific sources are specified for this course; however, students are expected to consult, as
needed, the sources used in the prerequisite and corequisite courses.

10.7 Project Guidance

• This is a project-oriented course based on the previous knowledge and experience gained in
other program courses. No, or very little, new material will be presented in lectures or class
discussions. Any new knowledge or capability needed to complete the project (e.g., domain
knowledge or knowledge about the use of a new tool or method) will require research by the
students on the project team.

• The project should involve significant software security elements, and software assurance
methods and activities should be used in project work. For example, a security risk assess-
ment and an operational plan focused on security risks would be useful deliverables.

• An evolutionary or maintenance project dealing with an existing product would be a good
choice for this course. It might be appropriate to do a security assessment of an existing prod-
uct or service and make needed updates to reduce vulnerabilities.

CMU/SEI-2011-TR-013 | 73

• There is much debate about the source of project work. Should it be a real-world project with
a real customer or a made-up, but realistic, project? Each has advantages and disadvantages.
If a real customer is not available or appropriate, the instructor or another faculty member
may act as a pseudo customer.

• The instructor typically acts as a team coach or mentor.

• The chief source for assessment for this course would be project artifacts such as the follow-
ing: process and plan documents; risk and configuration management plans and reports; re-
ports on software assurance audits; requirements and design documents; source code; test
plans and reports; inspection and review reports; and team process and product assessments.

• An individual assessment can be based on self-assessment and peer assessment and, if possi-
ble, on the quality of an artifact for which the individual had primary responsibility. A teacher
might also use individual observations (e.g., how well an individual participates in a team de-
sign review) and/or an interview with the individual student.

• If the project has an outside customer, feedback from the customer can be helpful in assessing
individual and team performance.

CMU/SEI-2011-TR-013 | 74

CMU/SEI-2011-TR-013 | 75

Appendix A: MSwA2010 Body of Knowledge (BoK)

This section describes the MSwA2010 BoK, the core body of knowledge for an MSwA degree.
The term software assurance used in this section is the expanded definition in Section 2 of Vo-
lume I. The MSwA2010 BoK includes software assurance practices that are required to support
the MSwA2010 outcomes. All software assurance professionals must know these practices to per-
form their jobs effectively. The MSwA2010 BoK is structured into seven knowledge areas, with
each knowledge area subdivided into a set of knowledge units.

The MSwA2010 BoK does not provide detailed descriptions but rather serves as a guide to the
body of knowledge by referencing literature that explains and elaborates on the elements (see Ap-
pendix B of Volume I).

The following knowledge areas are defined in terms of the Bloom cognitive levels, which are de-
scribed in Appendix A of Volume I. Brief descriptions of the outcomes are included for each
knowledge area. For detailed descriptions of the outcomes, refer to Section 4 of Volume I.

1. Assurance Across Life Cycles

Outcome: Graduates will have the ability to incorporate assurance technologies and methods into
life-cycle processes and development models for new or evolutionary system development, and
for system or service acquisition.

1.1. Software Life-Cycle Processes

1.1.1. New development (Bloom Level C)

Processes associated with the full development of a software system

1.1.2. Integration, assembly, and deployment (Bloom Level C)

Processes concerned with the final phases of the development of a new or
modified software system

1.1.3. Operation and evolution (Bloom Level C)

Processes that guide the operation of the software product and its change over
time

1.1.4. Acquisition, supply, and service (Bloom Level C)

Processes that support acquisition, supply, or service of a software system

1.2. Software Assurance Processes and Practices

1.2.1. Process and practice assessment (Bloom Level AP)

Methods, procedures, and tools used to assess assurance processes and practic-
es

1.2.2. Software assurance integration into SDLC phases (Bloom Level AP)

Integration of assurance practices into typical life-cycle phases (for example,
requirements engineering, architecture and design, coding, test, evolution, ac-
quisition, and retirement)

CMU/SEI-2011-TR-013 | 76

2. Risk Management

Outcome: Graduates will have the ability to perform risk analysis and tradeoff assessment, and to
prioritize security measures.

2.1. Risk Management Concepts

2.1.1. Types and classification (Bloom Level C)

Different classes of risks (for example, business, project, technical)

2.1.2. Probability, impact, severity (Bloom Level C)

Basic elements of risk analysis

2.1.3. Models, processes, metrics (Bloom Level C)

Models, process, and metrics used in risk management

2.2. Risk Management Process

2.2.1. Identification (Bloom Level AP)

Identification and classification of risks associated with a project

2.2.2. Analysis (Bloom Level AP)

Analysis of the likelihood, impact, and severity of each identified risk

2.2.3. Planning (Bloom Level AP)

Risk management plan covering risk avoidance and mitigation

2.2.4. Monitoring and management (Bloom Level AP)

Assessment and monitoring of risk occurrence and management of risk mitiga-
tion

2.3. Software Assurance Risk Management

2.3.1. Vulnerability and threat identification (Bloom Level AP)

Application of risk analysis techniques to vulnerability and threat risks

2.3.2. Analysis of software assurance risks (Bloom Level AP)

Analysis of risks for both new and existing systems

2.3.3. Software assurance risk mitigation (Bloom Level AP)

Plan for and mitigation of software assurance risks

2.3.4. Assessment of Software Assurance Processes and Practices (Bloom Level AP)

As part of risk avoidance and mitigation, assessment of the identification and
use of appropriate software assurance processes and practices

CMU/SEI-2011-TR-013 | 77

3. Assurance Assessment

Outcome: Graduates will have the ability to analyze and validate the effectiveness of assurance
operations and create auditable evidence of security measures.

3.1. Assurance Assessment Concepts

3.1.1. Baseline level of assurance; allowable tolerances, if quantitative (Bloom Level
AP)

Establishment and specification of the required or desired level of assurance
for a specific software application, set of applications, or software-reliant sys-
tem (and tolerance for same)

3.1.2. Assessment methods (Bloom Level C)

Knowledge of how various methods (such as validation of security require-
ments, risk analysis, threat analysis, vulnerability assessments and scans, and
assurance evidence) can be used to determine if the software/system being as-
sessed is sufficiently secure within tolerances

3.2. Measurement for Assessing Assurance

3.2.1. Product and process measures by life-cycle phase (Bloom Level AP)

Definition and development of key product and process measurements that can
be used to validate the required level of software assurance appropriate to a
given life-cycle phase

3.2.2. Other performance indicators that test for the baseline as defined in 3.1.1., by life-
cycle phase (Bloom Level AP)

Definition and development of additional performance indicators that can be
used to validate the required level of software assurance appropriate to a given
life-cycle phase

3.2.3. Measurement processes and frameworks (Bloom Level C)

Knowledge of the range of software assurance measurement processes and
frameworks and how these might be used to accomplish software assurance in-
tegration into SDLC phases

3.2.4. Business survivability and operational continuity (Bloom Level AP)

Definition and development of performance indicators that can specifically
address the software/system’s ability to meet business survivability and opera-
tional continuity requirements, to the extent the software affects these

3.3. Assurance Assessment Process (collect and report measures that demonstrate the base-
line as defined in 3.1.1.)

3.3.1. Comparison of selected measurements to the established baseline (Bloom Level
AP)

Analysis of key product and process measures and performance indicators to
determine if they are within tolerance when compared to the defined baseline

CMU/SEI-2011-TR-013 | 78

3.3.2. Identification of out-of-tolerance variances (Bloom Level AP)

Identification of measures that are out of tolerance when compared to the de-
fined baselines and ability to develop actions to reduce the variance

4. Assurance Management

Outcome: Graduates will have the ability to make a business case for software assurance, lead
assurance efforts, understand standards, comply with regulations, plan for business continuity, and
keep current in security technologies.

4.1. Making the Business Case for Assurance

4.1.1. Valuation and cost-benefit models and cost and loss avoidance (Bloom Level AP)

Application of financially based approaches, methods, models, and tools to
develop and communicate compelling cost-benefit arguments in support of
deploying software assurance practices

4.1.2. Risk analysis (Bloom Level C)

Knowledge of how risk analysis can be used to develop cost-benefit arguments
in support of deploying software assurance practices

4.1.3. Compliance justification (Bloom Level C)

Knowledge of how compliance with laws, regulations, standards, and policies
can be used to develop cost-benefit arguments in support of deploying soft-
ware assurance practices

4.1.4. Business impact/needs analysis (Bloom Level C)

Knowledge of how business impact and needs analysis can be used to develop
cost-benefit arguments in support of deploying software assurance practices,
specifically in support of business continuity and survivability

4.2. Managing Assurance

4.2.1. Project management across the life cycle (Bloom Level C)

Knowledge of how to lead software and system assurance efforts as an exten-
sion of normal software development (and acquisition) project management
skills

4.2.2. Integration of other knowledge units (Bloom Level AN)

Identification, analysis, and selection of software assurance practices from any
knowledge units that are relevant for a specific software development or ac-
quisition project

4.3. Compliance Considerations for Assurance

4.3.1. Laws and regulations (Bloom Level C)

Knowledge of the extent to which selected laws and regulations are relevant
for a specific software development or acquisition project, and how com-
pliance might be demonstrated

CMU/SEI-2011-TR-013 | 79

4.3.2. Standards (Bloom Level C)

Knowledge of the extent to which selected standards are relevant for a specific
software development or acquisition project, and how compliance might be
demonstrated

4.3.3. Policies (Bloom Level C)

Knowledge of how to develop, deploy, and use organizational policies to acce-
lerate the adoption of software assurance practices, and how compliance might
be demonstrated

5. System Security Assurance

Outcome: Graduates will have the ability to incorporate effective security technologies and me-
thods into new and existing systems.

5.1. For Newly Developed and Acquired Software for Diverse Systems

5.1.1. Security and safety aspects of computer-intensive critical infrastructure (Bloom
Level K)

Knowledge of safety and security risks associated with critical infrastructure
systems such as found, for example, in banking and finance, energy production
and distribution, telecommunications, and transportation systems

5.1.2. Potential attack methods (Bloom Level C)

Knowledge of the variety of methods by which attackers can damage software
or data associated with that software by exploiting weaknesses in the system
design or implementation

5.1.3. Analysis of threats to software (Bloom Level AP)

Analysis of the threats to which software is most likely to be vulnerable in
specific operating environments and domains

5.1.4. Methods of defense (Bloom Level AP)

Familiarity with appropriate countermeasures such as layers, access controls,
privileges, intrusion detection, encryption, and code review checklists

5.2. For Diverse Operational (Existing) Systems

5.2.1. Historic and potential operational attack methods (Bloom Level C)

Knowledge of and ability to duplicate the attacks that have been used to inter-
fere with an application’s or system’s operations

5.2.2. Analysis of threats to operational environments (Bloom Level AN)

Analysis of the threats to which software is most likely to be vulnerable in
specific operating environments and domains

5.2.3. Design of and plan for access control, privileges, and authentication (Bloom Level
AP)

Design of and plan for access control and authentication

CMU/SEI-2011-TR-013 | 80

5.2.4. Security methods for physical and personnel environments (Bloom Level AP)

Knowledge of how physical access restrictions, guards, background checks,
and personnel monitoring can address risks

5.3. Ethics and Integrity in Creation, Acquisition, and Operation of Software Systems

5.3.1. Overview of ethics, code of ethics, and legal constraints (Bloom Level C)

Knowledge of how people who are knowledgeable about attack and prevention
methods are obligated to use their abilities, both legally and ethically, referenc-
ing the Software Engineering Code of Ethical and Professional Conduct [ACM
2009]

5.3.2. Computer attack case studies (Bloom Level C)

Knowledge of the legal and ethical considerations involved in analyzing a va-
riety of historical events and investigations

6. System Functionality Assurance

Outcome: Graduates will have the ability to verify new and existing software system functionality
for conformance to requirements and to help reveal malicious content.

6.1. Assurance Technology

6.1.1. Technology evaluation (Bloom Level AN)

Evaluation of capabilities and limitations of technical environments, languag-
es, and tools with respect to creating assured software functionality and securi-
ty

6.1.2. Technology improvement (Bloom Level AP)

Recommendation of improvements in technology as necessary within project
constraints

6.2. Assured Software Development

6.2.1. Development methods (Bloom Level AP)

Rigorous methods for system requirements, specification, architecture, design,
implementation, verification, and testing to develop assured software

6.2.2. Quality attributes (Bloom Level C)

Software quality attributes and how to achieve them

6.2.3. Maintenance methods (Bloom Level AP)

Assurance aspects of software maintenance and evolution

6.3. Assured Software Analytics

6.3.1. Systems analysis (Bloom Level AP)

Analysis of system architectures, networks, and databases for assurance prop-
erties

6.3.2. Structural analysis (Bloom Level AP)

Structuring the logic of existing software to improve understandability and
modifiability

CMU/SEI-2011-TR-013 | 81

6.3.3. Functional analysis (Bloom Level AP)

Reverse engineering of existing software to determine functionality and securi-
ty properties

6.3.4. Analysis of methods and tools (Bloom Level C)

Capabilities and limitations of methods and tools for software analysis

6.3.5. Testing for assurance (Bloom Level AN)

Evaluation of testing methods, plans, and results for assuring software

6.3.6. Assurance evidence (Bloom Level AP)

Development of auditable assurance evidence

6.4. Assurance in Acquisition

6.4.1. Assurance of acquired software (Bloom Level AP)

Assurance of software acquired through supply chains,5 vendors, and open
sources, including developing requirements and assuring delivered functionali-
ty and security

6.4.2. Assurance of software services (Bloom Level AP)

Development of service level agreements for functionality and security with
service providers and for monitoring compliance

7. System Operational Assurance

Outcome: Graduates will have the ability to monitor and assess system operational security and
respond to new threats.

7.1. Operational Procedures

7.1.1. Business objectives (Bloom Level C)

Role of business objectives and strategic planning in system assurance

7.1.2. Assurance procedures (Bloom Level AP)

Creation of security policies and procedures for system operations

7.1.3. Assurance training (Bloom Level K)

Selection of training for users and system administrative personnel in secure
system operations

7.2. Operational Monitoring

7.2.1. Monitoring technology (Bloom Level C)

Capabilities and limitations of monitoring technologies, and installation and
configuration or acquisition of monitors and controls for systems, services, and
personnel

5 For more information about software security supply chain risk, download the SEI report Evaluating and Mitigat-

ing Software Supply Chain Security Risks [Ellison 2010].

CMU/SEI-2011-TR-013 | 82

7.2.2. Operational evaluation (Bloom Level AP)

Evaluation of operational monitoring results with respect to system and service
functionality and security

7.2.3. Operational maintenance (Bloom Level AP)

Maintenance and evolution of operational systems while preserving assured
functionality and security

7.2.4. Malware analysis (Bloom Level AP)

Evaluation of malicious content and application of countermeasures

7.3. System Control

7.3.1. Responses to adverse events (Bloom Level AN)

Plan for and execution of effective responses to operational system accidents,
failures, and intrusions

7.3.2. Business survivability (Bloom Level AP)

Maintenance of business survivability and continuity of operations in adverse
environments (see also Knowledge Unit 3, Assurance Assessment)

Having a defined set of student prerequisites, established outcomes, a core body of knowledge,
and curriculum architecture is necessary but not sufficient. Often the most challenging part of
putting a new program or a new track in place is implementation. The next section provides
guidelines and recommendations for faculty members to consider when considering starting an
MSwA program.

CMU/SEI-2011-TR-013 | 83

Appendix B: MSwA BoK Topics Covered by Syllabi

The table below indicates which knowledge areas of the MSwA BoK are covered by which
courses in this syllabi.

Table 9: MSwA BoK Topics Covered by the Syllabi

Knowledge Areas Course That Covers This Area

1. Assurance Across Life Cycles

1.1. Software Life-Cycle Processes

1.1.1. New development Assured Software Development 1

1.1.2. Integration, assembly, and deployment Assured Software Development 1

1.1.3. Operation and evolution Assured Software Development 1

1.1.4. Acquisition, supply, and service Assured Software Development 1

1.2. Software Assurance Processes and Practices

1.2.1. Process and practice assessment Assured Software Development 1

1.2.2. Software assurance integration into SDLC phases
Assured Software Development 1

Assured Software Development 2

2. Risk Management

2.1. Risk Management Concepts Assurance Management

2.1.1. Types and classification

2.1.2. Probability, impact, severity

2.1.3. Models, processes, metrics

2.2. Risk Management Process Assurance Management

2.2.1. Identification

2.2.2. Analysis

2.2.3. Planning

2.2.4. Monitoring and management

2.3. Software Assurance Risk Management Assurance Management

2.3.1. Vulnerability and threat identification

2.3.2. Analysis of software assurance risks

2.3.3. Software assurance risk mitigation

2.3.4. Assessment of Software Assurance Processes and
Practices

3. Assurance Assessment

3.1. Assurance Assessment Concepts Assurance Assessment

3.1.1. Baseline level of assurance; allowable tolerances, if
quantitative

3.1.2. Assessment methods

CMU/SEI-2011-TR-013 | 84

Knowledge Areas Course That Covers This Area

3.2. Measurement for Assessing Assurance Assurance Assessment

3.2.1. Product and process measures by life-cycle phase

3.2.2. Other performance indicators that test for the
baseline, by life-cycle phase

3.2.3. Measurement processes and frameworks

3.2.4. Business survivability and operational continuity

3.3. Assurance Assessment Process (collect and report measures
that demonstrate the baseline)

Assurance Assessment

3.3.1. Comparison of selected measurements to the
established baseline

3.3.2. Identification of out-of-tolerance variances

4. Assurance Management

4.1. Making the Business Case for Assurance Assurance Management

4.1.1. Valuation and cost/benefit models, cost and
loss avoidance, return on investment

4.1.2. Risk analysis

4.1.3. Compliance justification

4.1.4. Business impact/needs analysis

4.2. Managing Assurance Assurance Management

4.2.1. Project management across the life cycle

4.2.2. Integration of other knowledge units

4.3. Compliance Considerations for Assurance
Assurance Management

System Operational Assurance

4.3.1. Laws and regulations

4.3.2. Standards

4.3.3. Policies

5. System Security Assurance

5.1. For Newly Developed and Acquired Software for Diverse
Applications

System Security Assurance

5.1.1. Security and safety aspect of computer-intensive
critical infrastructure

5.1.2. Potential attack methods

5.1.3. Analysis of threats to software

5.1.4. Methods of defense

5.2. For Diverse Operational (Existing) Systems System Security Assurance

5.2.1. Historic and potential operational attack methods

5.2.2. Analysis of threats to operational environments

5.2.3. Designing of and plan for access control, privileges,
and authentication

CMU/SEI-2011-TR-013 | 85

Knowledge Areas Course That Covers This Area

5.2.4. Security methods for physical and personnel
environments

5.3. Ethics and Integrity in Creation, Acquisition, and Operation of
Software Systems

System Security Assurance

5.3.1. Overview of ethics, code of ethics, and legal
constraints

5.3.2. Computer attack case studies

6. System Functionality Assurance

6.1. Assurance Technology

6.1.1. Technology evaluation Assured Software Development 2

6.1.2. Technology improvement
Assured Software Development 1

Assured Software Development 2

6.2. Assured Software Development

Assured Software Analytics

Assured Software Development 1

Assured Software Development 3

6.2.1. Development methods
Assured Software Development 1

Assured Software Development 2

6.2.2. Quality attributes

6.2.3. Maintenance methods

6.3. Assured Software Analytics Assured Software Analytics

6.3.1. Systems analysis

6.3.2. Structural analysis

6.3.3. Functional analysis

6.3.4. Analysis of methods and tools

6.3.5. Testing for assurance

6.3.6. Assurance evidence

6.4. Assurance in Acquisition
Assurance Assessment

Assured Software Analytics

6.4.1. Assurance of acquired software

6.4.2. Assurance of software services

7. System Operational Assurance

7.1. Operational Procedures System Operational Assurance

7.1.1. Business objectives

7.1.2. Assurance procedures

7.1.3. Assurance training

7.2. Operational Monitoring System Operational Assurance

7.2.1. Monitoring technology

7.2.2. Operational evaluation

CMU/SEI-2011-TR-013 | 86

Knowledge Areas Course That Covers This Area

7.2.3. Operational maintenance

7.2.4. Malware analysis

7.3. System Control System Operational Assurance

7.3.1. Responses to adverse events

7.3.2. Business survivability

CMU/SEI-2011-TR-013 | 87

Appendix C: Acronym List

AA
Assurance Assessment

AM
Assurance Management

ASA
Assured Software Analytics

ASD1
Assured Software Development 1

ASD2
Assured Software Development 2

ASD3
Assured Software Development 3

ATAM®
Architecture Tradeoff Analysis Method®

Bloom Cognitive Levels
K—knowledge
C—comprehension
AP—application
AN—analysis

BoK
body of knowledge

BSI
Build Security In

BSIMM
Building Security In Maturity Model

CAPEC
Common Attack Pattern Enumeration and Classification

CERT/CC
CERT® Coordination Center

® ATAM, Architecture Tradeoff Analysis Method, and CERT are registered trademarks owned by Carnegie Mellon

University.

CMU/SEI-2011-TR-013 | 88

CERT-RMM
CERT® Resilience Management Model

CLASP
Comprehensive, Lightweight Application Security Process

CMMI®
Capability Maturity Model IntegrationSM

COTS
commercial, off-the-shelf

CP
compliance and policy

CWE
Common Weakness Enumeration

DHS
Department of Homeland Security

GQM
Goal Question Metric

ISO
International Organization for Standardization

MA
measurement and analysis

NIST
National Institute of Standards and Technology

OWASP
Open Web Application Security Project

PT
penetration testing

QAW
Quality Attribute Workshop

SA
static analysis

® CMMI is a registered trademark owned by Carnegie Mellon University.

SM Capability Maturity Model Integration is a service mark of Carnegie Mellon University.

CMU/SEI-2011-TR-013 | 89

SACE
Software Assurance Capstone Experience

SAMATE
Software Assurance Metrics and Tools Evaluation

SAMM
Software Assurance Maturity Model

SDL
Security Development Lifecycle

SDLC
software development life cycle

SEI
Software Engineering Institute

SOA
service-oriented architecture

SOpA
System Operational Assurance

SQUARE
Security Quality Requirements Engineering

SSA
System Security Assurance

CMU/SEI-2011-TR-013 | 90

CMU/SEI-2011-TR-013 | 91

Bibliography

URLs are valid as of the publication date of this document.

[ACM 1999]
The Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS). Soft-
ware Engineering Code of Ethics and Professional Practice (Version 5.2). ACM/IEEE-CS joint
task force on Software Engineering Ethics and Professional Practices (SEEPP).
http://www.acm.org/about/se-code (1999).

[Ahern 2008]
Ahern, Dennis M.; Clouse, Aaron; & Turner, Richard. CMMI Distilled: A Practical Introduction
to Integrated Process Improvement, 3rd ed. Addison-Wesley Professional, 2008.

[Alberts 2010a]
Alberts, Christopher; Allen, Julia; & Stoddard, Robert. Integrated Measurement and Analysis
Framework for Software Security (CMU/SEI-2010-TN-025). Software Engineering Institute,
Carnegie Mellon University, 2010.

[Alberts 2010b]
Alberts, Christopher J. & Dorofee, Audrey J. Risk Management Framework (CMU/SEI-2010-TR-
071). Carnegie Mellon University, Software Engineering Institute, 2010.
http://www.sei.cmu.edu/library/abstracts/reports/10tr017.cfm

[Alexander 2003]
Alexander, Ian. “Misuse Case: Use Cases with Hostile Intent.” IEEE Software 20, 1 (January/
February 2003): 58–66.

[Allen 2008]
Allen, Julia H.; Barnum, Sean; Ellison, Robert J.; McGraw, Gary; & Mead, Nancy R. Ch. 4, “Se-
cure Software Architecture and Design,” 115-150. Software Security Engineering: A Guide for
Project Managers. Addison-Wesley Professional, 2008.

[Altran 2010]
Altran Group. Correctness by Construction. http://www.altran-praxis.com/cbyc.aspx (2010).

[Anderson 2008]
Anderson, Ross J. Security Engineering: A Guide to Building Dependable Distributed Systems,
2nd ed. Wiley, 2008.

[AS/NSZ 2009]
Australian/New Zealand Standard (AS/NZS) & International Organization for Standardization
(ISO). AS/NZS ISO 31000: 2009 Risk Management—Principles and Guidelines, 1st ed. AS/NZS,
November 2009.

CMU/SEI-2011-TR-013 | 92

[Bagheri 2008]
Bagheri, Hamid & Mirian-Hosseinabadi, Seyed-Hassan. “Injecting Security as Aspectable NFR
into Software Architecture,” Proceedings of the 14th Asia-Pacific Software Engineering Confe-
rence. Nagoya, Japan. Dec. 2007. IEEE Computer Society Press, 2008.

[Barbacci 2003]
Barbacci, Mario R.; Ellison, Robert J.; Lattanze, Anthony J.; Stafford, Judith A.; Weinstock,
Charles B.; & Wood, William G. Quality Attribute Workshops (QAWs), 3rd ed. (CMU/SEI-2003-
TR-016). Software Engineering Institute, Carnegie Mellon University, 2003.
http://www.sei.cmu.edu/library/abstracts/reports/03tr016.cfm

[Berg 2005]
Berg, Clifford J. High Assurance Design: Architecting Secure and Reliable Enterprise Applica-
tions. Addison-Wesley Professional, 2005.

[Bishop 2002]
Bishop, Matt. Computer Security: Art and Science. Addison-Wesley Professional, 2002.

[Blanchette 2009]
Blanchette, Stephen, Jr.; Crosson, Steven; & Boehm, Barry. Evaluating the Software Design of a
Complex System of Systems (CMU/SEI-2009-TR-023, ESC-TR-2009-023). Software Engineering
Institute, Carnegie Mellon University, 2009.
http://www.sei.cmu.edu/library/abstracts/reports/09tr023.cfm

[Bloom 1956]
Bloom, B. S., ed. Taxonomy of Educational Objectives: The Classification of Educational Goals:
Handbook I, Cognitive Domain. Longmans, 1956.

[Bode 2009]
Bode, Stephan; Fischer, Anja; Kühnhauser, Winfried; & Riebisch, Matthias. “Software Architec-
tural Design Meets Security Engineering,” Proceedings of the 16th Annual IEEE International
Conference and Workshop on the Engineering of Computer Based Systems. San Francisco, CA,
April 2009. IEEE Computer Society Press, 2009.

[Caralli 2004]
Caralli, Richard; Stevens, James F.; Bradford, J. Wilke; & Wilson, William R. The Critical Suc-
cess Factor Method: Establishing a Foundation for Enterprise Security Management (CMU/SEI-
2004-TR-010). Carnegie Mellon University, Software Engineering Institute, July 2004.
http://www.sei.cmu.edu/library/abstracts/reports/04tr010.cfm

[CERT 2008]
CERT. Insider Threat and the Software Development Life Cycle (podcast). Software Engineering
Institute, Carnegie Mellon University.
http://www.cert.org/podcast/show/20080304cappelli.html (2008).

CMU/SEI-2011-TR-013 | 93

[CERT 2009]
CERT. Integrating Privacy Practices into the Software Development Life Cycle (podcast). Soft-
ware Engineering Institute, Carnegie Mellon University.
http://www.cert.org/podcast/show/20091222hood.html (2009).

[CERT 2010a]
CERT. CERT Secure Coding Standards. https://www.securecoding.cert.org/ (2010).

[CERT 2010b]
CERT. CERT Resilience Management Model. http://www.cert.org/resilience/rmm.html (2010).

[CERT 2010c]
CERT. SQUARE (educational materials for download). Software Engineering Institute, Carnegie
Mellon University. http://www.cert.org/sse/square.html (2010).

[CERT 2011]
CERT. Homepage. http://www.cert.org/ (2011).

[CloudFail 2011]
CloudFail.net. Homepage. http://cloudfail.net/ (2011).

[CMMI 2007]
CMMI Product Team. CMMI for Acquisition. Version 1.2 (CMU/SEI-2007-TR-017, ESC-TR-
2007-017). Software Engineering Institute, Carnegie Mellon University, 2007.
http://www.sei.cmu.edu/library/abstracts/reports/07tr017.cfm

[CMMI 2009]
CMMI Product Team. CMMI for Services, Version 1.2 (CMU/SEI-2009-TR-001, ESC-TR-2009-
001). Software Engineering Institute, Carnegie Mellon University, 2009.
http://www.sei.cmu.edu/library/abstracts/reports/09tr001.cfm

[CMMI 2010]
CMMI Product Team. CMMI for Development, Version 1.3 (CMU/SEI-2010-TR-033). Carnegie
Mellon University, Software Engineering Institute, November 2010.
http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm

[CoFI 2008]
CoFI. CASL from CoFI. http://www.informatik.uni-bremen.de/cofi/wiki/index.php/CASL
(2008).

[Committee 2010]
Committee for Advancing Software-Intensive Systems Producibility; Computer Science and Tel-
ecommunications Board; & Division on Engineering and Physical Sciences. Critical Code: Soft-
ware Producibility for Defense. National Academy of Sciences, 2010.

[Community 2007]
Community Z Tools. Overview. http://czt.sourceforge.net/ (2007).

CMU/SEI-2011-TR-013 | 94

[Dark 2008]
Dark, Melissa; Harter, Nathan; Morales, Linda; & Garcia, Mario A. “An Information Security
Ethics Education Model.” Journal of Computing Sciences in College 23, 6 (June 2008): 82-88.

[DHS 2008]
Department of Homeland Security (DHS) Software Assurance (SwA) Acquisition Working
Group. Software Assurance in Acquisition: Mitigating Risks to the Enterprise.
https://buildsecurityin.us-cert.gov/swa/downloads/SwA_in_Acquisition_102208.pdf (2008).

[DHS 2008–2009a]
Department of Homeland Security (DHS). Build Security In, Best Practices.
https://buildsecurityin.us-cert.gov/bsi/articles/best-practices.html (2008–2009).

[DHS 2008–2009b]
Department of Homeland Security (DHS). Build Security In, Secure Software Development Life
Cycle (SDLC) Process (articles). https://buildsecurityin.us-
cert.gov/bsi/articles/knowledge/sdlc.html (2008-2009).

[DHS 2010]
Department of Homeland Security (DHS). Security Requirements Engineering (articles).
https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/requirements.html (2010).

[Dowd 2007]
Dowd, Mark; McDonald, John; & Schuh, Justin. The Art of Software Security Assessment: Identi-
fying and Preventing Software Vulnerabilities. Addison Wesley, 2007.

[Eagle 2008]
Eagle, Chris. The IDA Pro Book: The Unofficial Guide to the World’s Most Popular Disassemb-
ler. No Starch Press, 2008.

[Ellison 2010a]
Ellison, Robert J.; Goodenough, John B.; Weinstock, Charles B.; & Woody, Carol. Evaluating
and Mitigating Software Supply Chain Security Risks (CMU/SEI-2010-TN-016). Software Engi-
neering Institute, Carnegie Mellon University, 2010.
http://www.sei.cmu.edu/library/abstracts/reports/10tn016.cfm

[Ellison 2010b]
Ellison, Robert J. & Woody, Carol. Considering Software Supply Chain Risks.
https://buildsecurityin.us-cert.gov/bsi/resources/1185-BSI/1207-BSI.html (2010).

[Epstein 2006]
Epstein, Jeremy; Matsumoto, Scott; & McGraw. “Software Security and SOA: Danger, Will Ro-
binson!” IEEE Security & Practice 4, 1 (January/February 2006): 80–83.

[Fitzgerald 2010]
Fitzgerald, John. Welcome to the VDM Portal. http://www.vdmportal.org/twiki/bin/view (2010).

CMU/SEI-2011-TR-013 | 95

[Garcia 2006]
Garcia, Suzanne & Turner, Richard. CMMI Survival Guide: Just Enough Process Improvement.
Addison-Wesley Professional, 2006.

[Gerhart 2002]
Gerhart, Susan; Hogle, Jan; & Crandall, Jedidiah. How Do Buffer Overflow Attacks Work?
http://nsfsecurity.pr.erau.edu/bom/ (2002).

[Goertzel 2007]
Goertzel, Karen Mercedes; Winograd, Theodore; McKinley, Holly Lynne; Oh, Lyndon; Colon,
Michael; McGibbon, Thomas; Fedchak, Elaine; & Viennuea. Software Security Assurance: State-
of-the-Art Report (SOAR). Information Assurance Technology Analysis Center (IATAC) & Data
and Analysis Center for Software (DACS), 2007. http://iac.dtic.mil/iatac/download/security.pdf

[Gold 2004]
Gold, Nicolas; Mohan, Andrew; Knight, Claire; & Munro, Malcolm. “Understanding Service-
Oriented Software,” IEEE Software 21, 2 (March/April 2004): 71–77.

[Golze 2008]
Golze, Andreas; Sarbiewski, Mark; & Zahm, Alain. Optimize Quality for Business Outcomes: A
Practical Approach to Software Testing. Wiley Publishing, 2008.

[Graham 2006]
Graham, Dan. Introduction to the CLASP Process. https://buildsecurityin.us-
cert.gov/bsi/articles/best-practices/requirements/548-BSI.html (2006).

[Grembi 2009]
Grembi, Jason. “Secure Software Development - A Security Programmer’s Guide.” Tutorial at
11th Semi-Annual Software Assurance Forum. Arlington, VA, November 2009. Software Engi-
neering Institute, Carnegie Mellon University, 2009.
https://www.vte.cert.org/vteweb/go/2699.aspx

[Haley 2008]
Haley, Charles B; Laney, Robin; Moffett, Jonathan D.; & Nuseibeh, Bashar. Ch. 214, “Arguing
Satisfaction of Security Requirements.” Information Security and Ethics: Concepts, Methodolo-
gies, Tools, and Applications. 6 vols. Idea Group Reference, 2008.

[Hansson 2010]
Hansson, Jörgen; Wrage, Lutz; Feiller, Peter H.; & Morley, Johhn. “Architectural Modeling to
Verify Security and Nonfunctional Behavior.” IEEE Security & Practice 8, 1: (Jan./Feb. 2010):
43–49.

[Holt 2010]
Holt, Alan & Huang, Chi-Yu. 802.11 Wireless Networks: Security and Analysis. Springer, 2010.

[Howard 2003]
Howard, Michael & LeBlanc, David. Writing Secure Code, 2nd ed. Microsoft Press, 2003.

CMU/SEI-2011-TR-013 | 96

[Howard 2005]
Howard, Michael; LeBlanc, David; & Viega, John. 19 Deadly Sins of Software Security.
McGraw-Hill, 2005.

[Howard 2006]
Howard, Michael & Lipner, Steve. The Security Development Lifecycle: SDL: A Process for De-
veloping Demonstrably More Secure Software. Microsoft Press, 2006.

[IBM 2009]
IBM. IBM Point of View: Security and Cloud Computing. http://www.ibm.com/common/ssi/fcgi-
bin/ssialias?infotype=SA&subtype=WH&appname=SWGE_TI_SE_USEN&htmlfid=TIW14045
USEN&attachment=TIW14045USEN_HR.PDF (2009).

[IBM 2011]
IBM. Requirements Management and Definition.
http://www-01.ibm.com/software/rational/offerings/lifecycle/ (2011).

[IEEE 1998a]
IEEE Standards Association (IEEE-SA). IEEE Std 1061–1998 IEEE Standard for a Software
Quality Metrics Methodology. IEEE–SA, 1998.

[IEEE 1998b]
IEEE Standards Association (IEEE–SA) IEEE Std 1219-1998 IEEE Standard for Software Main-
tenance. IEEE–SA, 1998.

[IEEE 1998c]
IEEE Standards Association (IEEE–SA). IEEE Std 1062–1998 IEEE Recommended Practice for
Software Acquisition. IEEE–SA, 1998.

[IEEE 2007]
IEEE Standards Association (IEEE–SA). IEEE Std 15939–2007 IEEE Systems and Software En-
gineering—Measurement Process. IEEE–SA, 2007.

[Ingalsbe 2008]
Ingalsbe, Jeffrey A.; Kunimatsu, Louis; Baeten, Tim; & Mead, Nancy R. “Threat Modeling: Di-
ving into the Deep End.” IEEE Software 25, 1 (January/February 2008). https://buildsecurityin.us-
cert.gov/bsi/resources/articles/932-BSI.html

[ISO 2005]
International Organization for Standardization and International Electrotechnical Commission
(ISO/IEC). ISO/IEC 27002:2005 Information Technology – Security Techniques – Code of Prac-
tice for Information Security Management. ISO/IEC, 2005.

[ISO 2007]
International Organization for Standardization (ISO). ISO/IEC 15939:2007 Systems and Software
Engineering—Measurement Process. ISO, 2007.

CMU/SEI-2011-TR-013 | 97

[ISO 2008]
International Organization for Standardization (ISO). ISO/IEC FCD 27005: 2008 Information
Technology—Security Techniques—Information Security Risk Management, 2nd ed. ISO, June
2008.

[Jacky 1996]
Jacky, Jonathan. The Way of Z: Practical Programming with Formal Methods. Cambridge
University Press, 1996.

[Joint Task Force 2009]
Joint Task Force Transformation Initiative. Recommended Security Controls for Federal Informa-
tion Systems and Organizations (NIST Special Publication 800-53), Revision 3. National Institute
of Standards and Technology, August 2009. Updated May 2010.
http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-final_updated-errata_05-
01-2010.pdf

[Joint Task Force 2010]
Joint Task Force Transformation Initiative. Guide for Applying the Risk Management Framework
to Federal Information Systems (NIST Special Publication 800-37), Revision 1. National Institute
of Standards and Technology, February 2010. http://csrc.nist.gov/publications/nistpubs/800-37-
rev1/sp800-37-rev1-final.pdf

[Kan 2002]
Kan, Stephen H. Metrics and Models in Software Quality Engineering, 2nd ed. Addison-Wesley,
2002.

[Kazman 2000]
Kazman, Rick; Klein, Mark H.; & Clements, Paul C. ATAM: Method for Architecture Evaluation
(CMU/SEI-2000-TR-004). Software Engineering Institute, Carnegie Mellon University, 2000.
http://www.sei.cmu.edu/library/abstracts/reports/00tr004.cfm

[Killcrece 2008]
Killcrece, Georgia. Incident Management. https://buildsecurityin.us-cert.gov/bsi/articles/best-
practices/incident/223-BSI.html (2005-2008).

[Leroy 2003]
Leroy, Xavier. “Computer Security from a Programming Language and Static Analysis Perspec-
tive,” 1–9. Proceedings of the 12th European Conference on Programming. Warsaw, Poland,
April 2003. Springer-Verlag, 2003.

[Linger 1979]
Linger, R.; Mills, H.; & Witt, B. Structured Programming: Theory and Practice. Addison-
Wesley, 1979.

[Mansourov 2011]
Mansourov, Nicolai & Campara, Djenana. System Assurance: Beyond Detecting Vulnerabilities.
Elsevier, 2011. http://www.elsevierdirect.com/ISBN/9780123814142/System-Assurance

CMU/SEI-2011-TR-013 | 98

[Massacci 2007]
Massacci, Fabio; Mylopoulos, John; & Zannone, Nicola. “Computer-Aided Support for Secure
Tropos.” Automated Software Engineering 14, 3 (September 2007): 341–364.

[McGraw 2010]
McGraw, Gary; Chess, Brian; & Migues, Sammy. Building Security In Maturity Model (BSIMM).
http://bsimm.com/ (2010).

[Mead 2008]
Mead, Nancy R. The Common Criteria. https://buildsecurityin.us-cert.gov/bsi/articles/best-
practices/requirements/239-BSI.html (2008).

[Mead 2009]
Mead, Nancy R.; Allen, Julia H.; Conklin, W. Arthur; Drommi, Antonio; Harrison, John; In-
galsbe, Jeff; Rainey, James; & Shoemaker, Dan. Making the Business Case for Software Assur-
ance (CMU/SEI-2009-SR-001). Software Engineering Institute, Carnegie Mellon University,
2009. http://www.sei.cmu.edu/library/abstracts/reports/09sr001.cfm

[Mead 2010]
Mead, Nancy R.; Allen, Julia H.; Ardis, Mark; Hilburn, Thomas B.; Kornecki, Andrew J.; Linger,
Rick; & McDonald, James. Software Assurance Curriculum Project Volume I: Master of Software
Assurance Reference Curriculum (CMU/SEI-2010-TR-005). Software Engineering Institute, Car-
negie Mellon University, 2010. http://www.sei.cmu.edu/library/abstracts/reports/10tr005.cfm

[Mell 2005]
Mell, Peter; Kent, Karen; & Nusbaum, Joseph. Guide to Malware Incident Prevention and Han-
dling (NIST Special Publication 800-83). National Institute of Standards and Technology, No-
vember 2005. http://csrc.nist.gov/publications/nistpubs/800-83/SP800-83.pdf

[Mellado 2010]
Mellado, Daniel; Fernández-Medina, Eduardo; & Piattini, Mario. “A Comparison of Software
Design Security Metrics,” 236–242. Proceedings of the Fourth European Conference on Software
Architecture. Copenhagen, Denmark, Aug. 2010. ACM, 2010.

[Merkow 2010]
Merkow, Mark S. & Raghavan, Lakshmikanth. Secure and Resilient Software Development. CRC
Press, 2010.

[Miller 2007]
Miller, Barton P.; Cooksey, Gregory; & Moore, Fredrick. “An Empirical Study of the Robustness
of MacOS Applications Using Random Testing.” ACM SIGOPS Operating Systems Review 41, 1
(January 2007): 78-86.

[MITRE 2010a]
The MITRE Corporation (MITRE). CAPEC: Common Attack Pattern Enumeration and Classifi-
cation. http://capec.mitre.org/ (2010).

CMU/SEI-2011-TR-013 | 99

[MITRE 2010b]
The MITRE Corporation (MITRE). Common Weakness Enumeration. http://cwe.mitre.org/
(2010).

[Mouratidis 2007]
Mouratidis, Haralambos & Giorgini, Paolo. Integrating Security and Software Engineering: Ad-
vances and Future Visions. Idea Group Publishing, 2007.

[Mouratidis 2010]
Mouratidis, Haralambos & Jurjens, Jan. “From Goal-Driven Security Requirements Engineering
to Secure Design.” International Journal of Intelligent Systems 25, 8 (August 2010): 813–840.

[Myers 2006]
Myers, Andrew. PLD’06 Tutorial T1: Enforcing and Expressing Security with Programming
Languages. http://www.cs.cornell.edu/andru/pldi06-tutorial/06jun-pldi-tutorial.pdf (2006).

[NIST 2005]
National Institute of Standards and Technology (NIST). SAMATE: Software Assurance Metrics
and Tool Evaluation. http://samate.nist.gov/Main_Page.html (2005).

[Open Group 2010]
The Open Group. TOGAF. http://www.opengroup.org/togaf/ (2010).

[OpenSAMM Project 2009]
OpenSAMM Project. Software Assurance Maturity Model (SAMM) v1.0.
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model (2009).

[Pollice 2006]
Pollice, Gary. Ethics and Software Development.
http://www.ibm.com/developerworks/rational/library/may06/pollice/index.html (2006).

[Pressman 2009]
Pressman, Roger S., Software Engineering: A Practitioner’s Approach, 6th ed. McGraw Hill,
2009.

[Ray 2006]
Ray, Arnab & Cleaveland, Rance. “A Software Architectural Approach to Security By Design,”
Proceedings of the 30th International Computer Software and Applications Conference. Chicago,
Ill, Sept. 2006. IEEE Computer Society Press, 2006.

[Rehman 2009]
Rehman, S. & Mustafa, K. “Research on Software Design Level Security Vulnerabilities.” ACM
SIGSOFT Software Engineering Notes 34, 6 (November 2009): 1–5.

CMU/SEI-2011-TR-013 | 100

[Ross 2008]
Ross, Ron; Katzke, Stu; Johnson, Arnold; Swanson, Marianne; & Stoneburner, Gary. Managing
Risk from Information Systems: An Organizational Perspective (NIST Special Publication 800-
39), 2nd draft. National Institute of Standards and Technology, April 2008.
http://www.smartgridinformation.info/pdf/2283_doc_1.pdf

[SAFECode 2008a]
Software Assurance Forum for Excellence in Code (SAFECode). Software Assurance: An Over-
view of Current Industry Best Practices.
http://www.safecode.org/publications/SAFECode_BestPractices0208.pdf (2008).

[SAFECode 2008b]
SAFECode. Fundamental Practices for Software Development: A Guide to the Most Effective
Secure Development Practices in Use Today.
http://www.safecode.org/publications/SAFECode_Dev_Practices1108.pdf (2008).

[SANS 2011]
The SANS Institute. Introduction to the SANS Security Policy Project.
http://www.sans.org/security-resources/policies/ (2011).

[Scarfone 2008]
Scarfone, Karen; Grance, Tim; & Masone, Kelly. Computer Security Incident Handling Guide
(NIST Special Publication 800-61), Revision 1. National Institute of Standards and Technology,
March 2008. http://csrc.nist.gov/publications/nistpubs/800-61-rev1/SP800-61rev1.pdf

[Schumacher 2006]
Schumacher, Markus; Fernandez-Buglioni, Eduardo; Hybertson, Duane; Buschmann, Frank; &
Sommerlad, Peter. Security Patterns: Integrating Security and Systems Engineering, Wiley Series
in Software Design Patterns, 2006.

[Seacord 2005]
Seacord, Robert C. Secure Coding in C and C++. Addison-Wesley, 2005.
http://www.sei.cmu.edu/library/abstracts/books/0321335724.cfm

[Stoneburner 2001]
Stoneburner, Gary; Hayden, Clark; & Feringa, Alexis. Engineering Principles for Information
Technology Security (A Baseline for Achieving Security). National Institute of Standards and
Technology (NIST), 2001.

[Swanson 2010]
Swanson, Marianne; Bowen, Pauline; Phillips, Amy Wohl; Gallup, Dean; & Lynes, David. Con-
tingency Planning Guide for Federal Information Systems (NIST Special Publication 800-34),
Revision 1. National Institute of Standards and Technology, May 2010.
http://csrc.nist.gov/publications/nistpubs/800-34-rev1/sp800-34-rev1_errata-Nov11-2010.pdf

[SWIFT System 2010]
SWIFT System. Swift: making web applications secure by construction.
http://www.cs.cornell.edu/jif/swift/ (2010).

CMU/SEI-2011-TR-013 | 101

[Thiagarajan 2003]
Thiagarajan, Val. Information Security Management: BS 7799.2:2002: Audit Check List for
SANS. http://www.sans.org/score/checklists/ISO_17799_checklist.pdf (2003).

[Walton 2009]
Walton, G.; Linger, R.; and Longstaff, T. “Computational Evaluation of Software Security
Attributes,” 1–10. Proceedings of the 42nd Hawaii International Conference on System Sciences.
Los Alimitos, CA, Jan. 2009. IEEE Computer Society Press, 2009.

[Wikipedia 2011]
Wikipedia. Fagan Inspection. http://en.wikipedia.org/wiki/Fagan_inspection (2011).

[Wysopal 2006]
Wysopal, Chris; Nelson, Lucas; Dai Zovi, Dino; & Dustin, Elfriede. The Art of Software Security
Testing: Identifying Software Security Flaws. Addison-Wesley Professional, 2006.

[Zannone 2009]
Zannone, Nicola. “The Si* Modeling Framework: Metamodel and Applications.” International
Journal of Software Engineering and Knowledge Engineering 19, 5 (August 2009): 727–746.

[ZETA System 2010]
The ZETA System. Overview. http://uebb.cs.tu-berlin.de/zeta/ (2010).

CMU/SEI-2011-TR-013 | 102

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

March 2011; Revised July 2011

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Software Assurance Curriculum Project Volume III: Master of Software Assurance Course
Syllabi

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Nancy R. Mead, Julia H. Allen, Mark Ardis (Stevens Institute of Technology), Thomas B. Hilburn (Embry-Riddle Aeronautical University),
Andrew J. Kornecki (Embry-Riddle Aeronautical University), & Richard C. Linger (Oak Ridge National Laboratory)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2011-TR-013

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-2011-013

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Modern society depends on software systems of ever-increasing scope and complexity in virtually every sphere of human activity includ-
ing business, finance, energy, transportation, education, communication, government, and defense. Because the consequences of fail-
ure can be severe, dependable functionality and security are essential. As a result, software assurance is emerging as an important dis-
cipline for the development, acquisition, and operation of software systems and services that provide requisite levels of dependability
and security.

This report, the third volume in the Software Assurance Curriculum Project sponsored by the U.S. Department of Homeland Security,
provides sample syllabi for the nine core courses in the Master of Software Assurance Reference Curriculum. That curriculum, detailed
in Volume I, Master of Software Assurance Reference Curriculum (CMU/SEI-2010-TR-005), presents a body of knowledge from which to
create a Master of Software Assurance degree program, as both a stand-alone offering and as a track within existing software engineer-
ing and computer science master’s degree programs. Volume II, Undergraduate Course Outlines (CMU/SEI-2010-TR-019), presents
seven course outlines that could be used in an undergraduate curriculum specialization for software assurance.

This volume is part of our transition plan for assisting educators who wish to implement a Master of Software Assurance degree pro-
gram, specialization, or certificate program. In addition to application in a standard university program, these syllabi may also be useful
for educators developing courses for industry practitioners.

14. SUBJECT TERMS

software security engineering, software assurance education, software assurance curriculum

15. NUMBER OF PAGES

117

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Software Assurance Curriculum Project Volume III: Master of Software Assurance Course Syllabi
	Table of Contents
	List of Tables
	Acknowledgments
	How to Use This Document
	Abstract
	1 Introduction
	2 Assurance Management (AM) Course
	3 System Operational Assurance (SOpA) Course
	4 Assured Software Analytics (ASA) Course
	5 Assured Software Development 1 (ASD1) Course
	6 Assured Software Development 2 (ASD2) Course
	7 Assured Software Development 3 (ASD3) Course
	8 Assurance Assessment (AA) Course
	9 System Security Assurance (SSA) Course
	Appendix A: MSwA2010 Body of Knowledge (BoK)
	Appendix B: MSwA BoK Topics Covered by Syllabi
	Appendix C: Acronym List
	Bibliography

